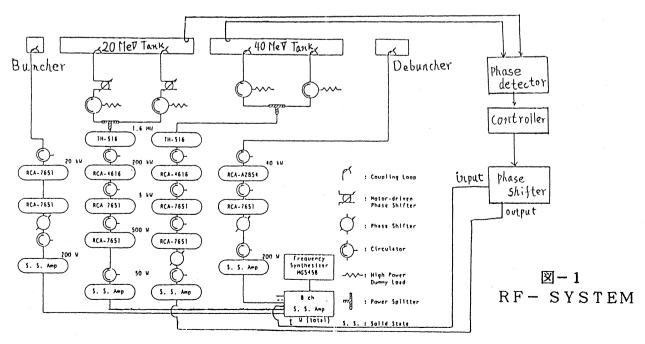
THE OPERATION OF THE 40 MeV PROTON LINAC

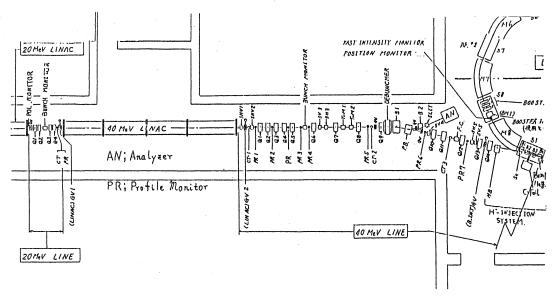
E. Takasaki, Z. Igarashi, T. Kato, C. Kubota,T. Takenaka, S. Machida, T. Shintomi and S. FukumotoNational Laboratory for High Energy Physics

ABSTRACT


The 40MeV Proton Linac was constructed and on Novemver 1, 1985, the first acceleration of H beam was in success. The characteristics of the 40MeV beam are observed and the results (emittances and so on) are given.

1. はじめに(文献1)

20 MeV陽子リニアックの出力エネルギーを、40 MeVまで上げるために、新しいアルバレ型リニアックが、建設された。1985年11月1日から、定常の運転が行われた。今回建設されたリニアックの主なパラメーターは、表<math>-1に与えらている。キャビティの長さは、ほぼ13 mであり、内径は0.9 mである。また 35 Oセルと2 F の8 F -7 F から構成されている。20 MeV陽子リニアックと比較して、違っている点は以下の通りである。


- a)ポスト カプラーの使用ーー文献2
- b)永久磁石を用いた4極磁石の使用--文献3 磁場勾配(2.5-1.6 kG/cm) 時の2極成分最小の位置と幾何学的中心との差が、4極電 磁石と比べても、充分に小さくなるように、4極磁石は製造された。
- c)自動的に周波数を、追尾するためのチュウナーの使用ーー文献4
- d) RF ーコンタクター;タンク間の接続には960¢のヘリコフレックス(6.5¢),ポスト カプラーにはマルチラムバンドのコンタクターの使用
- e)タンクの温度調節のために、今まで使用していた冷却水系を延長し、また ドリフトチューブのためには、新たに冷却水系を増設した。この系は、温度調節には 熱交喚器を使用せず、発熱分だけ冷却水を補給することにより温度調節している。
- f)RF-SYSTEM--文献5

前回報告したように、今まで使用していた系を2系統に分割した。2-feed system のため、T-型 high power splitter が据え付けられた。タンク間の位相をロックするために、図-1に示す様に、回路系が付け加えられた。これにより、RF-レベルの調整のみで、運動量 及び 運動量の拡がりを H-人射用に合わせる事ができる。

2. 運転 と ビーム測定

図-2に、20 M e V と 40 M e V ライン上の色々のモニターとその位置を、示した。本文中に表れる記号は、この図の中に示されている。

図ー2 ビームライン と モニターの配置

1)捕獲効率のタンクレベル依存性(図-3)

加速電場が零でも90%以上の透過率があるので、この効果を見るため、CT-1とB1の下流にあるCT-3の電流の比を測定した。タンクレベル5.8以上で充分な捕獲効率を得られた。

2) 2ケのタンク間の位相と捕獲の関係(図ー4)

20 M e V ビームのバンチを40 M e V タンクのアクセプタンスに受け入れるために、C T -3 / C T -1 の比を測定した。図に見られる様に、この関係は、2 ケのタンクレベルにも非常に関係している。

3) バンチモニター(文献 6) と AN (analyzing magnet) による測定 ビームパルス ($50\mu s$) 内のバンチ波形の変化、縦方向のアクセプタンス等を観測するために、モニターが準備された。バンチ波形を、図ー5に示す。まだ準備不足(回路、ANの 校正、レンジ)で、充分な結果を得られていない。

しかし 通常の運転時では、1),2),3)で得られたデータを、参考にして、図ー1中の 位相のロックを設定した。

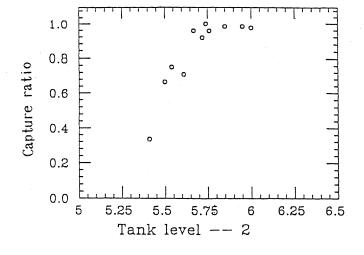


図-3 捕獲効率 と タンクレベル

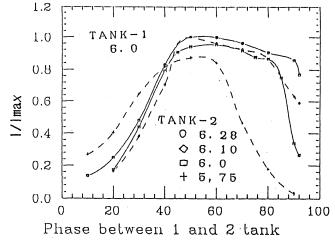


図-4 捕獲効率 と 位相

4) エミタンスの測定

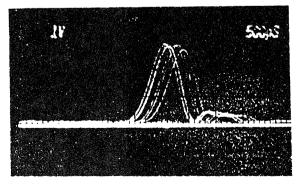
エミタンスの測定は、形状として楕円を仮定し、4極電磁石の強さを変えて、PR、PR2, PR3等を測定し、次式を最小2乗法で解く事により求める。

(beam width/2);
$$^2 = M_{11}; ^2 x (\beta x \epsilon) - 2 x M_{11}; x M_{12}; x (\alpha x \epsilon) + M_{12}; ^2 x (\gamma x \epsilon)$$

 M_{11} , M_{12} ; transfer matrix elements (known)

$$\alpha, \beta, \gamma$$
; Twiss parameters

 ε : emittance


今迄に測定されたエミタンス値を、図ー6に示す。かなりの変動が、観測されているが、これらは、ライナックへのビームの入射条件(off-axis)並びに タンクレベル、位相、20 Me Vライナックの4極電磁石の磁場勾配の変更等によると思われる。40 Me Vタンクのアクセプタンスは、PARMILAでの計算値に一致している。

文献

- 1. S.Fukumoto et al., Proc. 1986 Linear Accelerator Conf., SLAC
- 2. T.Kato, to be published
- 3. E.Takasaki et al., Proc. 5-th Symposium on accelerator science and technology, 206 (1984)
- 4. Z. Igarashi et al., in this meeting
- 5. T.Takenaka et al., Proc.10-th meeting on linear accelerator, 96 (1985)
- 6. Z. Igarashi et al., Proc. 7-th meeting on linear accelerator(KEK 82-14),89(1983)

表-1 40MeV リニアック の パラメーター

エネルギー	20.6 - 40.46 MeV	周波数 201.070 MHz	
タンク	鉄,銅鍍金	ドリフトチューブ ステンレス、銅	鍍金
長さ	12.84 m	長さ 23.32 - 28.79 cm	
内径	0.90 m	外径 16 cm	
セル数	35	Bore 径 3 cm	
鍍金厚	0.5 mm	Stem 径 3.6 cm	
4極磁石	永久磁石(ALNICO-9)	同期位相 -30.(degree)	
内径	3.4 cm	平均電場 2.1 MV/m	
外径	13.5 cm	Shunt impedance 70.3 - 68.7 M	Ω /m
長さ	16 cm	Transit time factor .869981	43
磁場勾面	2.0 - 2.1 kG/cm	Effective shunt imp. 53.22 - 45.5	6 MΩ/m

 $\begin{array}{c} TANK-2\\ 6. 0 \end{array}$

図-5 バンチ波形

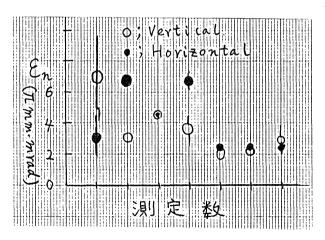


図-6 40MeV エミッツタンス