FREQUENCY CONTROL OF KEK-PS NEW 40MEV LINAC

Z.IGARASHI, S.FUKUMOTO, T.KATO, T.KUBOTA, S.MACHIDA, T.SHINTOMI, E.TAKASAKI and T.TAKENAKA

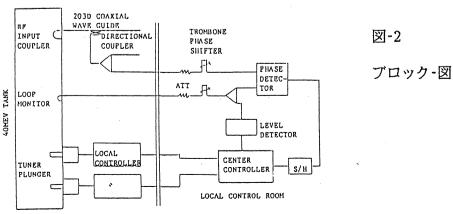
National Laboratory for High Energy Physics

Abstract

An automatic control system which makes an Alvalez linac's resonance frequency follow the input RF frequency with tuner plungers is descrived.

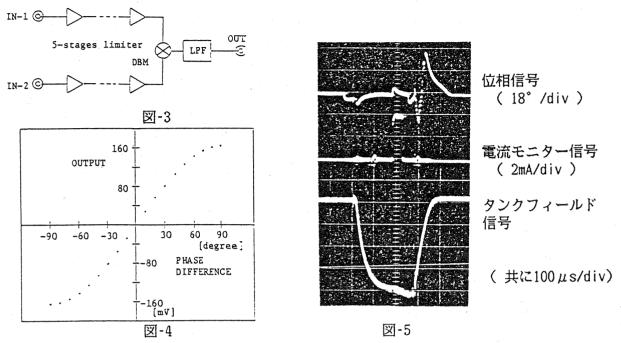
1.序

KEK-PS ライナックは、1985年11月、既設 20 MEV ライナックの下流に、新らしく、加速タンクを設置して、エネルギーを 40 MEV に増強した。この新しい、アルバレ型 40 MEV タンクは 20 MEV と同一の周波数(201.065 MHz) でドライブされ、又、高いQ値(>57000) を持っている。従って、温度ドリフト等によりタンクの共振周波数が RF 周波数から、ずれると、仮に入力 RF パワーが一定でも加速フィールト が変動する恐れがある。そこで、2個のチューナーを使って、共振周波数が自動的に RF 周波数を追尾する装置を 40 MEV タンクに設置した。

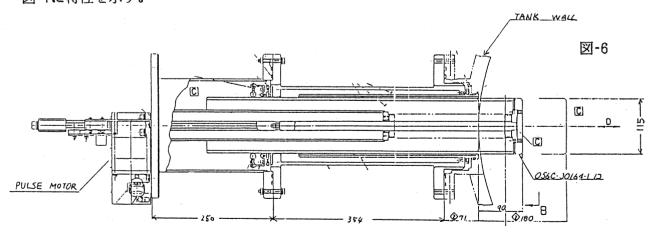

2.原理

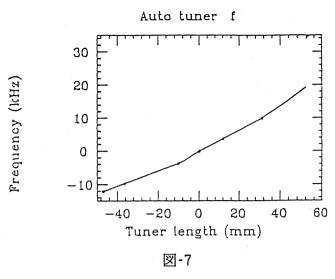
加速タンクの共振特性は、図-1 に示す様な簡単な R,L,C 共振回路に置き換えて考えてもよい。この回路に流れる電流 -1 は次式により与えられる。

この 、L 内の総磁束 φ はタンク内の総磁束に相当し、これによる磁場をループモニタが検出 する。(図-2 参照)


(1)及び(2)式より ω > ω 。の場合、タンク内、磁場はドライブ RFより位相が遅れ、逆の場合、進む。そして ω = ω 。 の場合、同位相となる。従って逆に、同位相となる様に、L 又は、C を変えれば常に ω = ω 。となる。

アルバレ型ライナックの加速モードは TM010 で、タンク側壁部分で磁場は最大となり、電場は最小となる。従って、側壁近傍の空間に蓄えられるエネルギーは殆ど磁場による。この側壁の一部を変化させる事は、側壁近傍の空間の体積変化を来し、蓄えられる総エネルギーも変わる。これは図-1の等価回路で 磁気エネルギーを蓄える し を変化させる事に相当し、ω。も当然、変化する。


3.装置の概要


図-2 で示す様に、RF 信号は入力カップラー近くにある方向性結合器(-50 dB)から、又、タンクフィールドはループモニターから、各々位相特性の良いバロンケーブルでローカルコントロールルームへ送られ、アッテネイター、トロンボーンフェイズシフターを通って、フェイズデテクターに入る。フェイズデテクターのブロック図、及び特性を図-3,-4に示す。又出力波形(位相信号)をタンクフィールド波形、ビーム電流波形と共に図-5に示す。

位相信号は S/H 回路を通ってセンターコントローラーに入る。ここで位相信号の極性と大き さに応じてチューナーの動く方向、速度を決める信号を発生し、ローカルコントローラーに送る。 チューナーの駆動は、位置決め精度、制御の容易さ、等を考慮してパルスモーターで行ってい る。

20 MEV タンク用チューナーはタンク壁面でベリリウム銅製コンタクターで接触させ摺動する構造になっているが、長期間の運転を経ると接触部分が熱等により変質し、チューナーが動かなくなるトラブルを生じた。そこで新しい 40 MEV タンクでは図-6の様な $\lambda/2$ チョーク構造とし、コンタクターには、DC モーター用ブラシ等に使用され、熱に強いグラファイトを用いた。図-7に特性を示す。

4.まとめ

エネルギー増強以来、本装置は問題なく 稼動しているが、完成後のテスト及びの運 転を通じて得られた事について述べると、

(1)共振周波数を+-67 Hz 以内で RF 周波数に合わせる事ができた。

(2)加速器の立ち上げ等の場合、共振周波数が、大きく変動し、定常状態に達するには、1 時間程かかった。しかし、本装置を稼働すると、この変動が打ち消され、立ち上げが速くなった。

(3)チューナーをチョーク構造にした為タンクの Q 値が、通常の形の物に比べ 3 倍以上 (2本で -1400)低下した。これはチョーク構造が、同軸共振器となり RF パワーが入り込む為と思われる。

以上。

文献

- (1)S. Machida et al., Proc. 10th meeting on linear accelerator, 93 (1985).
- (2)T.Takenaka et al., ibid 96 (1985).
- (3)T. Takasaki et al., in this meeting.
- (4)T.Kato et al., in this meeting.
- (5)G.W.Wheeler et al., Particle Accelerators, vol.9,1,(1979).
- (6)H.Kobayakawa et al., KEK 83-9 (1983).