KEK 放射光源加速器 PF リングと PF-AR の現状

PRESENT STATUS OF PF RING AND PF-AR AT KEK

小林幸則^{#,A)}, 浅岡聖二^{A)}, 阿達正浩^{A)}, 飯田直子^{A)}, 上田明^{A)}, 内山隆司^{A)}, 海老原清一^{A)}, 尾崎俊幸^{A)}, 小野正明^{A)}, 帯名崇^{A)}, 影山達也^{A)}, 加藤龍好^{A)}, 菊池光男^{A)}, 金 秀光^{A)}, 久米達哉^{B)}, 小玉恒太^{A)}, オリガ・コンスタンティノワ^{A)}, 坂井 浩^{A)}, 坂中章悟^{A)}, 坂本 裕^{A)}, 佐々木洋征^{A)}, 佐藤政行^{A)}, 佐藤佳裕^{A)}, 下ヶ橋秀典^{A)}, 塩屋達郎^{A)}, 島田美帆^{A)}, 高井良太^{A)}, 鷹崎誠治^{A)}, 高木宏之^{A)}, 高橋毅^{A)}, 多田野幹人^{A)}, 谷本育律^{A)}, 田原俊央^{A)}, 多和田正文^{A)}, 土屋公央^{A)}, 長橋進也^{A)}, 中村典雄^{A)}, 濁川和幸^{A)}, 野上隆史^{A)}, 芳賀開^{-A)}, 原田健太郎^{A)}, 本田融^{A)}, 本田洋介^{A)}, 丸塚勝美^{A)}, 三増俊広^{A)}, 宮内洋司^{A)}, 宮島司^{A)}, 山本尚人^{A)}, 山本将博^{A)}, 吉田正人^{A)}, 吉本伸^{-A)}, 渡邊 謙^{A)}

Yukinori Kobayashi ^{#, A)}, Seiji Asaoka ^{A)}, Masahiro Adachi ^{A)}, Naoko Iida ^{A)}, Akira Ueda ^{A)}, Takashi Uchiyama ^{A)}, Kiyokazu Ebihara ^{A)}, Toshiyuki Ozaki ^{A)}, Masaharu Ono ^{A)}, Takashi Obina ^{A)}, Tatsuya Kageyama ^{A)}, Ryukou Kato ^{A)}, Mitsuo Kikuchi ^{A)}, Xiuguang Jin ^{A)}, Tatsuya Kume ^{B)}, Kota Kodama ^{A)}, Olga Konstantinova ^{A)}, Hiroshi Sakai ^{A)},

Syogo Sakanaka A), Hiroshi Sakamoto A), Hiroyuki Sasaki A), Masayuki Sato A), Yoshihiro Sato A),

Hidenori Sagehashi ^{A)}, Tatsuro Shioya ^{A)}, Miho Shimada ^{A)}, Ryota Takai ^{A)}, Seiji Takasaki ^{A)}, Hiroyuki Takaki ^{A)},

Takeshi Takahashi ^{A)}, Mikito Tadano ^{A)}, Yasunori Tanimoto ^{A)}, Toshio Tahara ^{A)}, Masafumi Tawada ^{A)}, Kimichika

Tsuchiya ^{A)}, Shinya Nagahashi ^{A)}, Norio Nakamura ^{A)}, Kazuyuki Nigorikawa ^{A)}, Takashi Nogami ^{A)}, Kaiichi Haga ^{A)},

Kentaro Harada ^{A)}, Toru Honda ^{A)}, Yosuke Honda ^{A)}, Katsumi Marutsuka ^{A)}, Tohihiro Mimashi ^{A)},

Hiroshi Miyauchi ^{A)}, Tsukasa Miyajima ^{A)}, Naoto Yamamoto ^{A)}, Masahiro Yamamoto ^{A)}, Masato Yoshida ^{A)},

Shinichi Yoshimoto^{A)}, Ken Watanabe^{A)}

^{A)} Accelerator Laboratory, KEK

^{B)} Applied Research Laboratory, KEK

Abstract

The present status of the Photon Factory storage ring (PF ring) and the Photon Factory advanced ring (PF-AR) at High Energy Accelerator Research Organization (KEK), including recent progress for the machine developments, are reported. The operation times of both PF ring and PF-AR became less than 3000 hours due to shortage of funds for electric charges, in spite of strong demands from the users in FY2014. In the PF ring, two variable polarized undulators (U#13, U#28) were installed in February 2015 and commissioned in April 2015. In the PF-AR, the beam position monitor circuits were renewal during FY2014 and the upgrade plan of beam transport line is in progress to realize the full energy injection of 6.5 GeV.

1. はじめに

大学共同利用機関法人高エネルギー加速器研究機 構(KEK)の放射光科学研究施設(フォトンファク トリー: PF) は、1982 年から今日まで 32 年の長き にわたり大学共同利用を中心にした運営を行い、物 質科学および生命科学を中心にした基礎科学の発展 に貢献してきた。現在では、2.5GeV PF リングと 6.5 GeV PF アドバンストリング (PF-AR) の2つの放射 光専用リングを運転し、年間 3,500 人を超えるユー ザに対して紫外線からX線までの放射光を供給して いる。Table 1 に現在の PF リングと PF-AR の主なパ ラメータを示す。PF リングでは、高輝度化改造によ り低エミッタンス化が実現し性能が向上するともに、 短周期アンジュレータの新設に加え、90年代前半に 製造されたアンジュレータの更新が進んできている。 PF-AR においては、高度化改造によりビーム寿命が 大幅に改善し、さらにフルエネルギー入射を目指し

yukinori.kobayashi@kek.jp

た直接入射路増強計画が進行している。本年会では、 最近の PF リングと PF-AR の運転状況と更新・増強 計画について報告する。

Table 1: Principal Parameters of PF Ring and PF-AR

	PF リング	PF-AR	
ビームエネルギー	2.5 GeV	6.5 GeV	
水平エミッタンス	34.6 nm·rad	293 nm·rad	
周長	187 m	377 m	
蓄積最大電流値	450 mA	60 mA	
運転モード	Top-up	Decay	
挿入光源 BL 数	11	5	

2. 運転の現状

Figure 1 に、1990 年度頃から 2014 年度までの PF

リングおよび PF-AR の運転時間の推移を棒グラフで 示す。2014 年度のリングの運転時間は 2013 年度に 比べそれぞれ 1152 時間(48日)、1560 時間(65日) の減少となった。さらに、ユーザ運転はそれぞれ約 1138 時間(47日)、1423 時間(59日)の減少と なっている。ユーザ運転時間は大震災以前に比べる と PF でおよそ 3/5、PF-AR ではおよそ 1/2 まで落ち 込んでいる。例えば、2010 年度 PF リング では 4050.8 時間、PF-AR では 4037.5 時間がユーザ運転と して供給されていた。この運転時間減少の要因は、 慢性的なプロジェクト経費の削減に加え、最近の電 気代高騰が大きな影響を及ぼしていると分析されて いる。一方、リングの故障率に関しては、それぞれ 約 0.5%、1.6%と昨年度に比べて低下しており、よ り安定した運転が実現したといえる。これは、震災 によってダメージを受けた装置が、復旧費により更 新され故障頻度が減ったことが主な要因と考えられ る。今後もより安定な運転を実現するために、定期 的な保守と老朽化した装置を早急に手当することが 肝要と考えている。

3. 更新・増強計画

3.1 挿入光源の更新

PFリングでは、2005年に行った直線部増強により 各直線部は延長され、4つの 1.4 m 短直線部が生ま れた。このうち短直線部では、これまでに周期長 20 mm 以下の短周期アンジュレータが開発・導入され てきた。2013 年の夏には、唯一残された短直線部 B14-15 に短周期アンジュレータ:SGU#15(周期長 17.6 mm,周期数 27)がインストールされて、小角 散乱実験と XAFS 実験への利用が始まっている。

また、延長された既存直線部を有効利用するため に、電子物性ビームライン用の挿入光源更新計画が ここ数年に渡って進められてきた。これらの挿入光 源は、全て放射光の偏光状態を制御出来る可変偏光 型のアンジュレータである。その最初の取り組みと して、B15-16 長直線部では 2 台の APPLE-II 型の可 変偏光アンジュレータをタンデムに並べ、キッカー マグネットシステムを用いて電子軌道を切り替える ことにより、真空紫外から軟 X 線領域で 10 Hz の偏 光切替実験が、2012 年から実現されユーザ運転が行 われている。

もう一つの長直線部である B01-02 直線部では、日 立製作所との共同研究の一環として、既存の U#02 (周期長 60 mm,周期数 60)を下流に移動し、その 上流に可変偏光アンジュレータ:U#02-2(周期長 160 mm,周期数 17)を2014年3月に新設した。この2台のアンジュレータを排他的に利用することで、 BL02では30 eVから2 keV以上に渡る広範囲の放射 光を同一ビームラインで利用することが可能となっ ている。U#02-2は6列の磁石列から構成され、磁石 列間の位相を独立に動かす事で偏光状態を制御する。 U#02-2のコミッショニング運転は順調に進み、各偏 光モードでの調整が順次行われた。2014の秋からは 縦横線偏光、左右円偏光及び楕円偏光の全ての偏光 モードでのコーザ運転が開始されている。

2014-15年にかけてはBL13, BL28用の挿入光源が 新たに可変偏光アンジュレータ:U#13,U#28 に更新 された。U#13 は周期長 76 mm、周期数 48 の APPLE-II 型アンジュレータで 50 eV から 1.5 keV のエネル ギー領域をカバーし、U#28 は U#02-2 と同じ周期長 160 mm の 6 列型アンジュレータであり 30 eV から 300 eV までの放射光を 1 次光で発生する。これらの 可変偏光アンジュレータのパラメータを Table 2 に示 す。また Figure 2 には U#13 と U#28 の計算スペクト ル範囲を示す。

Table 2: Basic Parameters of the New Undulators

	U#02-2	U#13	U#28
周期長(㎜)	160	76	160
周期数	17	48	22
最大 By, Bx (T)	0.33, 0.33	0.68, 0.34	0.33, 0.33
エネルギー範囲(eV)	30-300	50-1500	30-300
最小 gap(mm)	26	23	27
インストール (年)	2014	2015	2015

Figure 2: Calculated spectrum of the U#13 and U#28.

U#13 と U#28 の PF リングへのインストールは、 2015 年 2 月に同時に行われた。2015 年の 4 月からの 運転では各モードに対する調整スタディが着実に進 められ、秋からの運転では全ての偏光モードに対す るユーザ運転が開始される予定である。Figure 3 に PF リングに設置された U#13 と U#28 の写真を示す。

Figure 3: Photograph of the U#13 and U#28 in the PF ring.

3.2 モニタ回路の更新

既存のビーム位置モニタシステムは PF-AR 建設当 初に設計・製作されたものであり、老朽化による性 能劣化が顕著であった。各種アナログ回路のメンテ ナンスや、CAMAC 制御システムの保守によって運 用を継続してきたものの、時には故障のためユー ザーランを中断する事象も発生していた。また、全 84 台の BPM に対して検波回路は東西南北の制御側 室に設置した4台のみであり、加速器トンネル内に 設置した同軸リレーで個別の電極およびBPM を順番 に切り替えながら測定するシステムであったため、 リング全周のビーム軌道を測定するには10~20秒程 度の時間を要するという大きな制限があった。これ では各種のオプティクス調整をしようとしても軌道 測定に多くの時間を要してしまう上に、高速に軌道 補正をすることは不可能であることや加速途中の軌 道をリアルタイムに計測することが出来ない等、 ビーム調整の観点からも多くの不便な点があった。

2013 年 3 月に文科省の「先端研究基盤共用・プラットフォーム形成事業」として光プラットフォー

ムが採択され、PF-AR リングのビーム位置モニタ回路の更新が決定した。2013 年度内にモニタ回路の入 札から納品を完了し、引き続いて回路のベンチ測定 を実施した。2014 年夏期シャットダウン期間中には 従来のリレー切り替え方式を廃してリングトンネル 内から全電極信号を1対1の同軸ケーブルにて制御 室まで敷設する作業を完了した。Figure 4 に回路設 置場所の一部を示す。ラック上部にあるパネルを経 由して Instrumentation Technologies 社製のビーム位置 モニタ回路「Libera Brilliacne +」まで電極信号を接 続している。

Figure 4: A part of the new beam position circuits installed into the standard 19 inch rack. Low loss 8D-size cable connects between each electrode and the panel on the upper part of the rack. A 2U-height box contains four detection circuits.

2014年10月30日からのビーム運転にて新システムによる運用を開始した。配線ミスやコネクタの緩みなど軽微なミスはあったものの迅速に対処し、 ビーム運転初日からリング全周のビーム軌道や各種 レスポンスの測定をすることが出来た。Figure 5 に ビームの分散関数を測定した例を示す。横軸はBP Mの設置場所を示しており、合計83台のBPM信号 が表示されている。縦軸は RF 周波数を変更する前 の軌道に対する変化量である。1 kHz の RF 周波数 変化に対して約 100 µm の水平方向分散関数が測定 できており、計算値ともよく合致していることを確 認した。

リング全周の軌道測定に要する時間は 0.1 秒とな り、約 100 倍の速度向上を達成できた。これにより、 入射エネルギーの 3 GeV からユーザーラン用の 6.5 GeV まで加速する途中のビーム軌道を測定するこ とが可能となった。軌道調整の結果、現状では軌道 変化が原因のビーム損失は観測されていない。この ほか、従来のシステムでは不可能だった Turn-by-Turn でのビーム応答測定や入射電荷量測定など、多

Figure 5: The graphical user interface (GUI) of the new BPM system. The horizontal axis indicates the location of the BPM along the entire ring circumference and the vertical axis indicates the measured beam position. The upper and lower graphs express the horizontal and vertical beam positions, respectively. The blue line with circles denotes the latest beam position, updated every 0.1 s, while the green line denotes the minimum and maximum orbit deviations during the measurement. The GUI can switch an absolute measurement mode into a relative one for a reference orbit. The figure shows an example of orbit measurement; the relative beam position just before and after the RF frequency change represents the dispersion function of the ring.

くの情報が得られるようになり入射・加速調整など 各種ビームチューニングを効率的に行うことが可能 となった。

既に新システムはユーザ運転に供しており現在ま で位置モニタに起因するユーザ運転の中断回数はゼ ロである。今後は高速デジタルリンク網を導入する ことにより、さらなる軌道測定速度向上と高速軌道 フィードバックによる安定化を実現したいと考えて いる。

3.3 PF-AR 直接入射路

現在、PF-AR は LINAC を 20 分程度専有して入射 を行っている。また、Figure 6 に示すように、PF-AR の現在のビーム輸送路は KEKB のビーム輸送路 (KEKB-BT) と共有区間を持っており、PF-AR への 入射時には KEKB-BT の一部区間を PF-AR 入射用に 最適化する必要がある。しかしながら、現在アップ グレード中の SuperKEKB では蓄積ビームの寿命が 10 分程度と短くなるため、今までのように PF-AR 入 射時に LINAC を専有して入射を行うことが困難とな り、PF-AR も高速スイッチングされたビームを使っ て入射する必要が出てきた。

そこで、3.0 GeV の電子を入射するよう設計され ていた現在のビーム輸送路の使用をやめ、最初から 6.5 GeV の電子ビームを PF-AR に直接入射するため の新しいビーム輸送路(Figure 6 の赤線)を建設し ようという計画が現在進行中である^[1]。これにより、

Figure 6: New beam transport line (red) for the PF-AR.

今後は 3.0 GeV で入射した後に 6.5 GeV まで加速す る必要がなくなり、6.5 GeV でのフルエネルギー入 射が可能になると共に将来的にはトップアップ運転 も可能となる。

PF-AR 直接輸送路の建設スケジュールを Figure 7 に示す。計画は順調に進んでおり、トンネル建設は 2013年に、設備工事は2014年に完了した。コンポー ネントに関しては、新ビーム輸送路に使用する電磁 石は、現在の PF-AR の 3 GeV 入射路で使用している 電磁石(偏向電磁石 24 台、4 極電磁石 18 台)を基 本的には再利用する予定であるが、6.5 GeV にエネ ルギーを上げたため、入射点付近には強い 4 極電磁 石が必要であり、それらについては新規製作した。 また第 3 スイッチヤード (SY3) に設置する偏向電 磁石の内 2 台及び新入射点に設置する直流型のセプ タムも新たに製作した。

Figure 7: Construction Schedule of the PF-AR new transport line.

今後の予定として、PF-AR 直接輸送路へのコン ポーネントのインストールについては、現在のとこ ろ、2016年の7月頭から12月末を考えている。こ のインストールに際して、PF-ARは2016年の秋の運 転を停止する予定である。また、PFについてはSY3 のみの改造となるため、SY3および入射器運転時に 立ち入り禁止となるトンネル上流部について9月末 までのインストール作業とする。これによってPFは 2016年の夏季停止期間明けからはほぼ通常どおり運 転が可能となる予定である。

2015 年夏からは電磁石架台の設置作業および電力

ケーブルの配線を行う予定である。

現在考えている新ビーム輸送路のインストール時 期については、KEKB-BT を横断して作る予定であ ることから、SuperKEKB 建設の進行状況に依存する 所が大きい。現在、新ビーム輸送路のインストール 開始が 2016 年の 7 月からとなっているのは Belle-II 検出器のロールインの時期に合わせているためであ り、この時期が変更されるとそれに伴って新ビーム 輸送路のスケジュールも変更されることになる。

4. まとめ

2014 年度は、プロジェクト経費の削減と電気代の 高騰で、PFリング、PF-ARともに大幅な運転時間短 縮となった。しかし、光源加速器としては概ね安定 な運転が行われるとともに、挿入光源やモニタ回路 の更新は着実に実現し、また PF-AR 直接入射路増強 も順調に準備が行われた。

参考文献

[1] Hiroyuki Takaki, et al., "CONSTRUCTION PROJECT OF A NEW BEAM TRANSPORT LINE FOR PF-AR", in Proceedings of the 11th Annual Meeting of PASJ, 2014, SUP020.