PASJ2015 THP053

FT3L 金属磁性体コアのシャントインピーダンスに対する考察 STUDY OF SHUNT IMPEDANCE OF THE FT3L MAGNETIC ALLOY CORE

野村昌弘^{#, A)}, 山本昌亘^{A)}, 島田太平^{A)}, 田村文彦^{A)}, 大森千広^{B)}, 戸田信^{B)}, 長谷川豪志^{B)}, 原圭吾^{B)}, 吉井正人^{B)} Masahiro Nomura^{#, A)}, Masanobu Yamamoto^{A)}, Taihei Shimada^{A)}, Fumihiko Tamura^{A)}, Chihiro Ohmori^{B)}, Makoto Toda^{B)}, Katsushi Hasegawa^{B)}, Keigo Hara^{B)}, Masahito Yoshii^{B)} ^{A)} JAEA J-PARC Center, ^{B)} KEK J-PARC Center

Abstract

We are successful in increasing the shunt impedance of the MA cores by applying a transverse magnetic field during annealing. In this paper, we discuss the effects of transverse field annealing on the MA core shunt impedance by comparing two kinds of MA cores, those are the FT3M core that is annealed without any magnetic fields and the FT3L core that is annealed with a transverse magnetic field. We also discuss the shunt impedance of the MA core when the magnetization processes are governed by ideal magnetization rotations. To understand the ribbon thickness and the permeability dependeces of the shunt impedance intuitively, we represent the shunt impedance as the resistance of the closed rectangular loop through which the eddy current flows.

1. 序

J-PARC の二つのシンクロトロン(RCS、MR)では 金属磁性体コア(FT3M)を装填した加速空胴を採用し ている。今後、更なる大強度の陽子ビームを加速す る為には、コアのシャントインピーダンスを高める ことが重要である。RingRF グループでは磁場中熱処 理を行う事により、現状より高いシャントインピー ダンスを持った加速器用の大型コア(FT3L)の開発に 成功している[1]。我々が行なっている磁場中熱処理 は熱処理中に横方向の磁場を印加する方法で、ここ での横方向とは、コア内に発生する磁場に対しての 垂直方向を指す。この FT3L を装填した加速空胴は 既に1 台 MR に設置され、2014 年 10 月から実際の ビーム加速に用いられている。

本稿では、先ず磁場中熱処理を行なっていないコ ア FT3M と行なったコア FT3L の測定結果から、磁 場中熱処理によりコアのシャントインピーダンスが 向上するメカニズムについて述べる[2]。次に、磁場 中熱処理を行なうことにより磁化過程が主に磁化回 転となることはよく知られているので、理想的な磁 化回転の場合のコアのシャントインピーダンスを実 際の物理量に対応させることにより、シャントイン ピーダンスのリボン板厚依存性や透磁率依存性につ いての直感的な理解を行なう。

2. 磁場中熱処理によるシャントインピー ダンスの向上

この章では磁場中熱処理よるコアの磁気特性の変 化及び、シャントインピーダンスが向上するメカニ ズムについて述べる。コアの磁気特性は複素比透磁 率 $\mu_r = \mu'_s - j\mu''_s$ を用いて表す。 μ'_s は比透磁率を表し、 μ''_s はコアの損失に対応する量である。

2.1 磁場中熱処理と比透磁率

Fig. 1 に FT3M と FT3L の比透磁率µ'sの測定結果を 示す。

Figure 1: Frequency dependence of μ'_s . The solid and dashed lines represent the measurement results of μ'_s of the FT3L core and the FT3M core, respectively.

FT3M と FT3L のコアの形状は同一で、厚さ 25mm、 内径及び外径は 245mm と 800mm である。両コアと も厚さ約 13 μ m のリボンを巻くことにより作られ、 その後熱処理が行なわれる。両コアの違いは熱処理 中の磁場の有無だけである。Fig. 1 から FT3L の比透 磁率μ's は低周波数領域では低いものの、高周波数領 域での低下が少なく周波特性が良いことが分かる。 この高周波特性が良い理由について以下に述べる。

磁性体に磁場をかけた時の反応(磁化過程)には、 磁壁移動によるものと磁化回転によるものとがある。 熱処理中に磁性体に磁場をかけた場合、磁化過程は 主に磁化回転となることが知られている。磁化過程 に於ける磁壁移動と磁化回転の大きな違いの一つは、 磁壁移動の場合は磁化が磁壁の移動する狭い範囲で

[#] masahiro.nomura@j-parc.jp

のみ行なわれるのに対して、磁化回転の場合は磁化 がリボンの断面全体で行なわれる点である。それぞ れの場合での磁化過程の概念を Fig. 2 に示す。青色 で示した部分で磁化が行なわれている。高周波数領 域での透磁率の周波数特性を決める主な要因は、渦 電流により発生する逆方向の磁場である。磁壁移動 の場合は磁化過程が狭い範囲で起きる為、渦電流が 部分的に集中し、強い逆方向の磁場が発生する。こ の強い逆方向の磁場により透磁率は大きく低下して しまう。一方、磁化回転の場合は磁化がリボンの断 面全体で行なわれる為、渦電流はリボン全体に流れ、 磁壁移動と比較して逆方向の磁場は弱められる。こ の為、高周波数領域での透磁率の低下は抑制される ことになる。これが磁場中熱処理により磁化過程が 磁化回転となった場合に透磁率の高周波特性が良い 理由である。

Figure 2: Magnetization processes of magnetization rotations and domain wall movements [3].

2.2 磁場中熱処理と損失

Fig. 3 に FT3M と FT3L のコアの損失に対応する*µ*["] の測定結果を示す。

Figure 3: Frequency dependence of μ_s'' . The solid and dashed lines represent the measurement results of μ_s'' of the FT3L core and the FT3M core, respectively.

一般的に、コアの損失 P_{loss} はヒステリシス損 P_h 、古 典的渦電流損 P_a 、異常渦電流損 P_a の和で表される。

$$P_{loss} = P_h + P_e + P_a \tag{1}$$

磁化回転の場合は磁化過程が可逆過程と考えられる ので、ヒステリシス損は発生せず、更に磁化過程が リボン全体で行なわれる為、異常渦電流損も発生し ない。つまり、理想的な磁化回転の場合のコアの損 失は古典的渦電流損のみで考えることができる。µ''s はコアの損失に対応する量なので、Fig. 3 の低周波 数領域で FT3L のµ''sが小さいのは、磁化回転が主と なることによりヒステリシス損及び異常渦電流損が 減少した為である。高周波数領域で FT3L のµ's'が大 きい理由は、FT3M の比透磁率µ'sが高周波数領域で は大きく低下しているのに対し、FT3Lの比透磁率µ's は先に述べた様に高周波数領域での低下が抑制され ている為である。

2.3 磁場中熱処理とシャントインピーダンス

Fig. 4 に FT3M と FT3L のシャントインピーダンス を示す。FT3L のシャントインピーダンスは全周波 数領域で FT3M より大きいことが分かる。

Figure 4: Frequency dependence of the shunt impedance. The solid and dashed lines represent the measurement results of the shunt impedances of the FT3L and FT3M cores, respectively.

シャントインピーダンス R_p は複素比透磁率 $\mu_r = \mu'_s - j\mu''_s$ を用いて以下の式で表される。

$$R_p = \mu_0 \left(\mu_s'' + \frac{\mu_s'^2}{\mu_s''} \right) f \ t \ \ln \frac{r_2}{r_1} P_f \tag{2}$$

 t, r_1, r_2 はそれぞれコアの厚さ及び内外半径を表し、 P_f はコアの占積率を表している。Eq. (2)から、シャ ントインピーダンス R_p は比透磁率 μ'_s が大きくなると 大きくなることは明らかである。 μ''_s に関しては、Eq. (2)を μ''_s で微分することにより、低周波数領域(Q > 1) ではシャントインピーダンス R_p は μ''_s が小さくなると 大きくなり、逆に、高周波数領域(Q < 1)ではシャン トインピーダンス R_p は μ''_s が大きくなると大きくなる ことが分かる。

$$\frac{\partial R_p}{\partial \mu_s^{\prime\prime}} \propto \left(1 - \frac{\mu_s^{\prime 2}}{\mu_s^{\prime\prime 2}}\right) f = (1 - Q^2) f \tag{3}$$

以上の結果と、先に述べた磁化回転となった場合の 磁気特性の変化から、磁化過程が磁化回転となるこ とでシャントインピーダンスが大きくなるのは、低 周波数領域ではヒステリシス損及び異常渦電流損が 減少、つまりµ'sが大きく低下した為であり、高周波 数領域では磁気特性の周波数特性が向上しµ's及びµ's の低下が抑えられた為である。

PASJ2015 THP053

3. 磁化過程が理想的な磁化回転の場合の コアのシャントインピーダンス

この章では、磁化過程が理想的な磁化回転の場合 のコアのシャントインピーダンスを実際の物理量に 対応させることにより、磁場中熱処理により磁化過 程が主に磁化回転となった場合のコアのシャントイ ンピーダンスのリボン板厚依存性や透磁率依存性に ついての直感的な理解を行なう。

リボン一層からなるコアのシャントインピー ダンス

先に述べたように、理想的な磁化回転の場合のコ アの損失は古典的渦電流損のみで考えることができ る。そこで、コアのリボンを微小幅の長形ループに 分割し、そこに発生する渦電流損から計算したコア の損失とコアの並列の等価回路で表されたコアの損 失との比較から、コアのシャントインピーダンスに 対応する物理量を考える。

先ず初めに、最も単純なリボン一層からなるコア の低周波数領域でのシャントインピーダンスに対応 する物理量を考える。ここでの低周波数領域とは表 皮厚δ

$$\delta = \sqrt{\frac{2\rho}{\mu_0 \cdot \mu_i \cdot \omega}} \tag{4}$$

がリボンの厚みより十分に厚い領域($\delta \gg d$)を指す。 μ_i は DC での比透磁率を表している。この領域では 磁束はリボンの断面全域に均一に広がっていると考 えることができる。リボンでの損失を微小幅 Δx の長 形ループに分割して考える。Fig. 5 にその概念を示 す。

Figure 5: Schematic diagram of the one ribbon layer core cross section.

中心からxの位置の長形ループに誘起される電圧 $V_l(x)$ は以下の式で表すことができる。

$$V_l(x) = \frac{2V_0}{d}x\tag{5}$$

 V_0 はリボンの最外周($x = \frac{a}{2}$)に誘起される電圧で、こ の電圧 V_0 はコアを並列の等価回路で表した場合にそ れに印加される電圧に相当している。Eq. (5)からこ の長形ループに流れる電流密度*i_l(x)*は以下の式で表 す事ができる。

$$i_l(x) = \frac{V_l(x)}{\Delta R(l\Delta x)} = \frac{V_0}{dt\rho} x$$
(6)

ここで、ΔRは長形ループー周の抵抗値を表す。

$$\Delta R = \frac{2(t+x)\rho}{l\Delta x} \approx \frac{2t\rho}{l\Delta x} \tag{7}$$

この長形ループでの時間平均した損失ΔPは以下の式 から計算することができ、

$$\Delta P = \frac{1}{2} \{ i_l(x)(l\Delta x) \}^2 \Delta R = \frac{V_0^2 l}{d^2 t \rho} x^2 \Delta x \tag{8}$$

リボン全体での損失 P_{ribbon} は損失 $\Delta P \varepsilon x$ で積分することにより求められる。

$$P_{ribbon} = \int_0^{\frac{d}{2}} \frac{V_0^2 l}{d^2 t \rho} x^2 \, dx = \frac{V_0^2 l d}{24 t \rho} \tag{9}$$

一方、シャントインピーダンス R_p を用いて時間平均した損失 P_{loss} を表すと、

$$P_{loss} = \frac{1}{2} \frac{V_0^2}{R_p} \tag{10}$$

となる。Eq. (9)と(10)を比較することにより、シャ ントインピーダンス R_p は以下の式で表すことができる。

$$R_p = \frac{2t\rho}{l_6^d} \tag{11}$$

この Eq. (11)の意味について考える。Fig. 6 に Eq. (8)から計算した損失密度 $\Delta P / \Delta x$ をリボン中心からの距離で表す。

Figure 6: Power loss density $\Delta P/\Delta x$ in the low frequency region where $\delta \gg d$.

Fig. 6 の実線以下で囲まれた面積はリボンでの損失 Pribbonを表している。図中に示した破線は、最外周 の損失密度の大きさで、その面積がリボンの損失 Pribbonと同じ面積となる長方形を表している。リボ ンの最外周部に誘起される電圧は V₀なので、この長 方形は起電力 V₀による渦電流がリボンの両端d/6の 幅に流れた場合に、その損失がリボンの損失Pribbon と同じになる事を意味している。シャントインピー ダンスはコアに電圧 V_0 が誘起された時に発生する損 失を表す抵抗と考えることができるので、この場合 のシャントインピーダンスはリボンの両端d/6の幅 に渦電流の方向に沿った電流が流れた場合の抵抗に 対応していると考える事ができる。Fig. 7 参照。Eq. (11)は面積 $S = l\frac{d}{6}$ 、長さ2t、抵抗率 ρ の抵抗を表して おり、まさにこの考えに合致している。

Figure 7: Schematic diagram of the one ribbon layer core cross section. The shunt impedance is correspond to the resitance with the length of 2t and the area of $l\frac{d}{6}$.

次に、一層のリボンからなるコアの高周波数領 域でのシャントインピーダンスに対応する物理量を 考える。ここでの高周波数領域とは表皮厚 δ がリボ ンの厚みより十分に薄い領域($\delta \ll d$)を指す。MR の 加速周波数領域(1.23 ~ 1.67 MHz)での FT3L の表皮厚 δ は約 2.5 ~ 3.0 μ m なので、MR の加速周波数領域は この高周波数領域にあたる。この領域では渦電流が 作る逆方向の磁場によりリボンの表面付近に渦電流 が集中する。高周波数領域での長形ループに流れる 渦電流密度 $i'_i(x)$ は表皮厚 δ を用いて以下の式で表す ことができる。

$$i'_{l}(x) = \frac{V_{0}}{2t\rho} e^{-\frac{(\frac{d}{2}-x)}{\delta}}$$
(12)

渦電流密度*i*₁(*x*)により長形ループに発生する時間平 均した損失Δ*P*は、

$$\Delta P = \frac{1}{2} \{ i'_l(x)(l\Delta x) \}^2 \Delta R = \frac{V_0^2 l}{4t\rho} e^{-\frac{2(\frac{d}{2} - x)}{\delta}} \Delta x$$
(13)

となり、リボン全体での損失P_{ribbon}は

$$P_{ribbon} = \int_{0}^{\frac{d}{2}} \frac{V_{0}^{2}l}{4t\rho} e^{-\frac{2(\frac{d}{2}-x)}{\delta}} dx \approx \frac{V_{0}^{2}l\delta}{8t\rho}$$
(14)

となる。Eq. (10)と(14)を比較することにより、高周 波数領域でのリボン一層からなるコアのシャントイ ンピーダンス R_p は以下の式で表すことができる。

$$R_p = \frac{2t\rho}{l\frac{\delta}{2}}$$

(15)

Fig. 8 に Eq. (13)から計算した表皮厚 $\delta = 2.5 \mu m$ の場合についての損失密度 $\Delta P / \Delta x$ を実線で表す。図中の実線以下で囲まれた面積はリボンでの損失 P_{ribbon} を表している。表皮効果の影響で損失がリボンの表面付近に集中している事が分かる。図中に示した破線は、低周波数領域と同様の最外周の損失密度の大きさで、その面積がリボンでの損失 P_{ribbon} と同じ面積となる長方形を表している。このことから、この場合のシャントインピーダンスはリボンの両端 $\delta/2$ の幅に渦電流の方向に沿った電流が流れた場合の抵抗に対応していると考える事ができる。Eq. (15)は面積 した。長さ2t、抵抗率 ρ の抵抗を表しており、まさにこの考えに合致している。

Figure 8: Power loss density $\Delta P/\Delta x$ in the high frequency region where $\delta \ll d$.

この節では多層のリボンからなるコアのシャント インピーダンスについての議論を行なう。但し、簡 単の為に、磁束のコアの動径方向の距離依存性は考 えないこととする。リボンの層数 m はコアの内外半 径r₁及びr₂、リボンの板厚dを用いて以下の式で表す ことができる。

$$m = \frac{r_2 - r_1}{d} \tag{16}$$

多層のコアの一層当たりの磁束は、同じ大きさで一 層のリボンからなるコアと比較すると1/mとなるの で、多層のコアのリボン一層当たりの損失P'ribbonは、 一層のリボンからなるコアの損失Pribbonと比較して、

$$P_{ribbon}' = \frac{1}{m^2} P_{ribbon} \tag{17}$$

となる。コアは m 層のリボンから形成されているの で、コア全体の損失 P_{core} はこの m 倍

$$P_{core} = m P'_{ribbon} = \frac{1}{m} P_{ribbon}$$
(18)

となる。Eq. (18)、(9)、(14)から多層の場合のコアの

PASJ2015 THP053

損失 P_{core} を求め、Eq. (10)と比較する事により低周波 数領域と高周波数領域でのm層のコアのシャントイ ンピーダンス R_p はそれぞれ以下の式で表すことがで きる。

$$R_{p} = m \frac{2t\rho}{l_{ave.\frac{d}{6}}} = \frac{r_{2} - r_{1}}{d} \frac{2t\rho}{l_{ave.\frac{d}{6}}}$$
(19)

$$R_p = m \frac{2t\rho}{l_{ave.\frac{\delta}{2}}} = \frac{r_2 - r_1}{d} \frac{2t\rho}{l_{ave.\frac{\delta}{2}}}$$
(20)

ここで、*l_{ave.}*は多層のコアの平均の周長を表している。Eq. (19)及び(20)から、多層のコアのシャントインピーダンスは各層のコアのシャントインピーダンスの和となっていることが分かる。

3.3 古典電磁気学による計算結果との比較

理想的な磁化回転の場合は古典的な電磁気学の計 算からもコアのシャントインピーダンスは計算する ことができる。この節では古典電磁気学からの計算 結果と上述の結果との比較を行なう。磁化過程が理 想的な磁化回転の場合の複素透磁率 $\mu_s = \mu'_s - j \mu''_s$ は 古典電磁気学から以下の式で計算することができる。

$$\mu'_{s} = \mu_{i} \frac{\delta}{d} \cdot \frac{\left(\sinh\frac{a}{\delta} + \sin\frac{a}{\delta}\right)}{\cosh\frac{d}{\delta} + \cos\frac{d}{\delta}}$$
(21)

$$\mu_{s}^{\prime\prime} = \mu_{i} \frac{\delta}{d} \cdot \frac{\left(\sinh\frac{d}{\delta} - \sin\frac{d}{\delta}\right)}{\cosh\frac{d}{\delta} + \cos\frac{d}{\delta}}$$
(22)

この Eq. (21)、(22)から求めたシャントインピーダン スの計算結果とシャントインピーダンスをリボンの 両端の渦電流方向の抵抗として表した Eq. (19)、(20) による計算結果を Fig. 9 に示す。計算に用いたコア 形状、占積率及び透磁率等の値は実際の FT3L の値 を用いている。シャントインピーダンスをリボンの 両端の渦電流方向の抵抗として表した場合の計算結 果は、大部分の周波数領域で古典電磁気学による計 算結果を再現していることが分かる。

Figure 9: Frequency dependence of the shunt impedance. The solid black line represents the calculation result by using Eqs. (21), and (22). The dashed red and blue lines show the calculation results by using Eqs. (19) and (20), respectively.

3.4 コアのシャントインピダンス

今までの議論により、リボン一層からなるコアの シャントインピダンスは、低い周波数領域ではリボ ンの両端d/6の幅に、高周波数領域ではリボンの両 端δ/2の幅に渦電流の方向に沿った電流が流れた場 合の抵抗に対応し、多層のリボンからなるコアは各 層のシャントインピーダンスの和として考えられる ことが分かった。このことにより、磁化過程が理想 的な磁化回転の場合の多層のコアのシャントイン ピーダンスが以下の依存性を持つことが直感的に理 解できる。

1) リボン板厚依存性

低周波数領域ではリボン一層のシャントインピー ダンスは板厚に反比例し、リボンの層数が板厚に反 比例するので、シャントインピーダンスはリボン板 厚の2 乗に反比例する。一方、高周波数領域ではリ ボン一層のシャントインピーダンスは板厚には依存 しないので、シャントインピーダンスはリボンの板 厚に反比例する。

2) 透磁率依存性

低周波数領域ではシャントインピーダンスは透磁率には依存しない。高周波数領域ではリボン一層のシャントインピーダンスが表皮厚δに反比例するので、シャントインピーダンスは透磁率の2分の1乗に比例する。

4. まとめ

磁場中熱処理を行なっていないコア FT3M と行 なったコア FT3L の測定結果から、磁場中熱処理に よりコアのシャントインピーダンスが向上するメカ ニズムについての考察を行なった。その結果、磁場 中熱処理よりシャントインピーダンスが向上するの は、磁化過程が主に磁化回転となることにより低周 波数領域ではμ^sが大きく低下した為であり、高周波 数領域ではμ^s及びμ^sの低下が抑えられた為であった。

磁場中熱処理より磁化過程が磁化回転となった場 のコアのシャントインピーダンスに対応する物理量 についての考察も行なった。その結果、理想的な磁 化回転の場合のコアのシャントインピーダンスは、 リボンの両端のある幅に渦電流の方向に沿った電流 が流れた場合の抵抗として表せられることが分かっ た。コアのシャントインピーダンスを実際の抵抗に 対応させることにより、シャントインピーダンスの リボン板厚依存性や透磁率依存性を直感的に理解す ることができた。

参考文献

- [1] C. Ohmori *et al.*, Phys. Rev. ST Accel. Beams 16, 112002 (2013).
- [2] M. Nomura *et al.*, Nuclear Instruments and Methods in Physics Research A 797 (2015) 196–200.
- [3] 柳井武志、「高性能低透磁率コア用ナノ結晶軟磁性材 料開発に関する研究」