PASJ2015 WEOM03

KEK における超伝導電子銃用空洞の高電界試験

VERTICAL TEST OF THE SUPERCONDUCTING RF GUN CAVITY AT KEK

許斐太郎#,A), 梅森健成A), 加古永治A), 小林幸則A), 山口誠哉A), 松田 竜一B), 柳澤剛B),

Taro Konomi^{#, A)}, Kensei Umemori^{A)}, Eiji Kako^{A)}, Yukinori Kobayashi^{A)}, Seiya Yamaguchi^{A)},

Ryuichi Matsuda ^{B)}, Takeshi Yanagisawa ^{B)}

^{A)} High Energy Accelerator Research Organization.

^{B)} Mitsubishi Heavy Industries, Ltd

Abstract

The development of superconducting RF gun has been started at KEK. The performance targets are that average current is 100 mA, normalized emittance is less than 1 π µm.rad, beam energy is 2 MeV and energy spread is less than 0.1 %. The SRF gun consists of 1.3 GHz and 1.5 cell elliptical cavity and backward illuminated photocathode. The cavity shape was designed by using SUPERFISH and GPT. Prototype #1 cavity was fabricated without choke, cathode plug and photocathode. 1st vertical test was done. The surface peak electric field reached Esp=66 MV/m, Qo=4.19×10⁹. This meets the target value Esp=42 MV/m Qo=4.5×10⁹ sufficiently.

1. はじめに

超伝導電子銃の長所は比較的高電界で連続運転が 可能な点である。この特徴から ERL や高繰り返し FEL という大電荷、高繰り返しを必要とする加速器 への適用が期待されている。一方、超伝導空洞はマ イスナー効果によりカソード直近へ静磁場を持ち込 むことができないため、RF 電磁場を最適化する以外 に、投影エミッタンスやエネルギー広がりを抑制す る手段がない。また、カソードの交換機構で RF 損 失を生じないためにはチョーク構造を用いてカソー ドプラグを仮想短絡する必要がある等、困難だと考 えられる点が多い。超伝導 RF 電子銃を先行開発し ている独 HZB 等の研究成果印を踏まえた上で、KEK が開発を進めている ERL の実績や将来計画に見合う よう超伝導 RF 電子銃の仕様を、Table 1 のように設 定した。最大表面電界は連続運転のために十分な マージンを持たせて設定している。

Table 1: Target Parameter of the Superconducting RF Gun

ビームエネルギー	2 MeV
RF 周波数	1.3 GHz
ビーム電流	100 mA
初期ビーム形状	φ2mm, 10ps (ビア缶型)
最大表面電界	50 MV/m 以下
投影エミッタンス	1 mm mrad 以下
投影エネルギー広がり	0.1% 以下
空洞数	1.5 セル

試作機の開発は3段階に設定した。第1段階では、 ビーム仕様を満たす RF 空洞形状を設計し、空洞全 体を液体ヘリウムへ浸した高電界試験(縦測定)で評 価する。第2段階はクライオモジュールに組み込め るように周波数チューナー、RF インプットカップ ラー、冷却構造について設計を行う。第3段階で、

konomi@post.kek.jp

ビーム引出し試験を行い、ビーム性能を確認する計 画である。第1段階の空洞設計・製作は完了してお り、SUPERFISHで求めた電磁界分布を Figure 1、完 成した超伝導空洞の写真を Figure 2、空洞パラメー タを Table 2.に示す^[2]。本電子銃空洞は $\beta=0$ から $\beta=0.97$ まで 1.5 セル内で加速するため、 $\beta=1$ 空洞に 比べ空洞長さが短く、形状因子が $\beta=1$ 空洞の約半分 程度である。目標電界 41.9 MV/m における空洞の表 面抵抗を 30n Ω と設定すると、目標 Qo 値は 4.5×10⁹ である。

第1段階の電子銃用空洞(試作1号機)は最終的に 空洞セル、チョーク構造、カソードプラグ、フォト カソードまでを含めた縦測定を計画している。各構 造の特性を明らかとするために各構造を一つずつ取 り付けていき縦測定を行う。本研究では空洞セル単 体の縦測定について述べる。

カソード面からのビーム軸長さ(cm)

Figure 1: Shape of the Superconducting RF gun#1.

Figure 2: Superconducting RF gun prototype cavity #1.

Tab	le	2:	Des	ign	Parameter	of	Supercond	lucti	ing	RF	Gun
-----	----	----	-----	-----	-----------	----	-----------	-------	-----	----	-----

ビームエネルギー	2 MeV
投影エミッタンス	0.98 mm.mrad
投影エネルギー広が	0.09 % (1.84 keV)
Ŋ	
最大表面電場	41.9 MV/m
最大表面磁場	95.2 mT
初期 RF 位相	55°
形状因子	135.6 Ω

2. 試作1号機の高電界試験準備

2.1 RF パラメータ

カソードプラグ径はわずか φ 10 mm であり、カ ソードプラグの有無が空洞パラメータに与える影響 は小さい。空洞セル単体の高電界試験結果を得れば 他の測定で空洞セルが与える影響をしることができ る。カソードプラグの有無による中心軸上電場と空 洞パラメータの比較をそれぞれ Figure 3 と Table 3 に 示す。空洞パラメータの Z_{Esp} は次式により最大表面 電場 E_{sp} を Qo 値と空洞壁面損失 P_{loss} に関係づけるパ ラメータである。

Figure 3: Comparison of the electric field on center axis.

Tal	bl	e	3	: (Com	parisc	on of	the	Cavi	ty F	Parame	eter

		-
	カソードプラグ	カソードプラグ
	有	無
周波数	1300.007 MH	1300.088 MHz
形状因子	135.6 Ω	135.5 Ω
Hp/Ep	2.27 mT/(MV/m)	2.28 mT/(MV/m)
Z_{Esp}	220.80 Ohm ^{0.5} /m	221.95 Ohm ^{0.5} /m

2.2 高電界試験のための処理内容

空洞製作後から縦測定までの処理は β=1 空洞の処 理内容を踏襲している。まず空洞製作後の空洞内面 を 106µm 除去し純ニオブ表面を出す化学研磨を行っ た。化学研磨液は HF:HNO₃:H₂PO₄=1:1:2 の容積比で 混ぜた酸を用いた。化学研磨液は空洞内に貯め込み、 均一に研磨するため撹拌棒を用いている。次に真空 炉で 750°C、3時間の熱処理を行いニオブ内の水素除 去と加工応力の除去後、電界分布のチューニングを 行っている。チューニングは電場強度をビーズ法で 測定しながら、カソードセルを固定した状態で第 2 セルのみを伸縮させている。最終的にカソードセル と第 2 セルの中心軸上最大電場の強度比が設計値か ら 1%以内のズレに収めることができた。Figure 4 に チューニング前後の中心軸上電磁場強度分布と設計 値を示している。

Figure 4: Power distribution of the electric field.

最終表面研磨として電界研磨により 20μm 除去した。電解研磨液は 98%濃度の硫酸と 48%濃度のフッ酸を 10:1 で混ぜた溶液である。電解研磨は化学研磨と同様に研磨液を空洞内に貯め込み行った。空洞内体積は 3.2 L であり、空洞の内表面積は 1979cm²である。良研磨を維持できる電界研磨液の Nb 含有量は 9g/L とされているため、研磨液は 10μm 研磨毎に交換した。陰極は純アルミ板を切り出して使用しており、撹拌機能を備えるために羽根状に加工している。研磨作業中は常に電極は回転運動を行っている。

Figure 5 にアルミ陰極と模式図を示す。通常研磨 は常時通電し行うが、研磨液量が多く発生した水素 泡が空洞から溢れないようにするため、研磨は1分 毎に通電し水素泡の発生を抑制する方法をとった。 研磨電流は50A、25Vであった。研磨量は積算電流よ り換算している。研磨後にアルミ陰極を引き抜こう とした際にアルミ電極を昇降回転運動させている装 置が誤作動を起こし、陰極がカソードセルにぶつか

PASJ2015 WEOM03

り傷をつけるトラブルを起こした。次回からはこの トラブルを起こさないために空洞内にアルミ陰極を 置いた時点で機械的ストッパーを取り付けて対処す る。

Figure 5: Pure aluminum cathode and setting of electro polishing.

電解研磨後は超純水で洗浄した。洗浄水が乾かないうちに 51℃に熱した超音波槽で 15 分間超音波脱 脂洗浄を行った。

最終表面処理として高圧水洗を行った。洗浄ノズ ルはカソードセル周辺と短いセル長の空洞を洗浄す るためにノズル角度を先端から 5°、70°、90° 110°に設置している。製作したノズルを Figure 6 に 示す。組み立てはクラス 10 のクリーンルームで行い、 ベーキングは 130℃を 44 時間保持した。

Figure 6 : High pressure rinsing nozzle.

3. 試作1号機の高電界試験

高電界試験は最大表面電界 Esp=66MV/m, Qo=4.31× 10⁹まで到達しクエンチで終了した(Figure 7)。発熱箇 所 は カ ソ ー ド セ ル 赤 道 部 で あ っ た 。 途 中 Esp=60MV/m でプロセスが生じたが無事プロセスア ウトしている。フィールドエミッションは Esp=50MV/m から始まっているが、目標電界 Eps=41.9 MV/m、Qo= 4.5×10^9 ではフィールドエミッションは起きていない。目標電界付近での測定結果 は Esp=42MV/mQo= 7.15×10^9 であった。空洞単体で はフィールドエミッションなしで目標性能を十分に 達成していることが示された。

高電界試験後に空洞内面を観察したところカソード セル周辺に Figure 8 に示す変色があった。変色の原 因として考えられることはフィールドエミッション であるが、フィールドエミションの大きな空洞で あっても変色が確認されたことは無くフィールドエ ミションが原因とは考えにくい。また電界研磨終了 時にアルミ陰極が空洞に当たり生じた傷を見ること もできた。変色の原因は今後の縦測定でセンサー密 度を増して明らかにしていく

Figure 8: Inside view of cathode cell after 1st vertical test.

4. まとめ、今後の展開について

超伝導電子銃試作 1 号機の製作が完了し最初の縦 測定を行った。チョーク、カソードプラグ、フォト カソードを付けずに空洞セル単体での高電界特性を 見るためである。縦測定の結果は目標最大表面電 界・Qo 値をフィールドエミションなしで達成できる ことを示している。今後チョーク、カソードプラグ、 フォトカソードを順次取り付けて縦測定を実施して いく計画である。 Proceedings of the 12th Annual Meeting of Particle Accelerator Society of Japan August 5-7, 2015, Tsuruga, Japan

PASJ2015 WEOM03

参考文献

- J. Knobloch, "SRF Photoinjector development for BERLinPro", TTC2012.
 Ryuichi Matsuda et al., 「KEK における超伝導 RF 電子 銃の開発状況」,第 11 回日本加速器学会年会 MOOL13.