PASJ2015 WEP127

炭素線治療用超伝導回転ガントリーの建設

CONSTRUCTION OF A SUPERCONDUCTING ROTATING GANTRY FOR HEAVY-ION THERAPY

岩田佳之^{#, A)}, 野田耕司^{A)}, 白井敏之^{A)}, 藤田敬^{A)}, 古川卓司^{A)}, 水島康太^{A)}, 原洋介^{A)}, 皿谷有一^{A)}, 丹正亮平^{A)}, 松葉俊哉^{A)}, 森慎一郎^{A)}, 佐藤眞二^{A)}, 正田光一^{A)}, 藤本哲也^{B)}, 新井弘樹^{B)}, 荻津透^{C)}, 雨宮尚之^{D)}, 長本義史^{E)}, 折笠朝史^{E)}, 高山茂貴^{E)}

Yoshiyuki Iwata^{#, A)}, Koji Noda^{A)}, Toshiyuki Shirai^{A)}, Takashi Fujita^{A)}, Takuji Furukawa^{A)}, Kota Mizushima^{A)},

Yosuke Hara^{A)}, Yuichi Saraya^{A)}, Ryohei Tansho^{A)}, Shunya Matsuba^{A)}, Shinichiro Mori^{A)}, Shinji Sato^{A)},

Koichi Shoda^{A)}, Tetsuya Fujimoto^{B)}, Hiroki Arai^{B)}, Toru Ogitsu^{C)}, Naoyuki Amemiya^{D)},

Yoshifumi Nagamoto^{E)}, Tomofumi Orikasa^{E)}, Shigeki Takayama^{E)}

^{A)} National Institute of Radiological Sciences (NIRS)

^{B)} Accelerator Engineering Corporation (AEC)

^{C)} High Energy Accelerator Research Organization (KEK)

^{D)} Department of Electrical Engineering, Kyoto University

^{E)} Toshiba Corporation

Abstract

A superconducting rotating gantry for heavy-ion therapy is being constructed. This isocentric rotating gantry can transport carbon ions with the maximum energy of 430 MeV/*u* to an isocenter with irradiation angles of over ± 180 degrees, and is further capable of performing three-dimensional raster-scanning irradiation. The rotating gantry equips combined-function superconducting magnets. Since these magnets can provide both dipole and quadrupole fields, no quadrupole magnet is required for beam focusing. Having used the combined-function superconducting magnets and optimized the layout of the gantry as well as the beam optics, the length and radius of the gantry became approximately 13 m and 5.5 m, respectively, which are comparable to those for proton gantries. We will present an overview of the gantry design as well as present status of the construction.

1. はじめに

粒子線がん治療において、粒子ビームを患者に対 して任意の角度から照射することを可能とさせる回 転ガントリーは極めて重要な装置であり、陽子線が ん治療装置では標準採用されるに至っている。一方、 炭素線がん治療においては、回転ガントリー構造体 に搭載される電磁石に必要な磁気剛性が陽子線用の それに比べ約3倍高いことから、電磁石群やそれら を支える回転構造体のサイズが大型となり、総重量 も膨大なものとなる。現在、炭素線治療用回転ガン トリーは世界で唯一、ハイデルベルグに建設され稼 働中であるが、その回転部重量は 600 トンを超える と報告されている印。我々は回転ガントリーの小 型・軽量化のため、超伝導回転ガントリーの開発を 進めてきた^[2]。この回転ガントリーでは、二極磁場 と四極磁場が同時且つ、独立発生可能な機能結合型 超伝導電磁石を採用している。これら超伝導電磁石 の採用により、回転ガントリーの大幅な小型・軽量 化が実現されている。超伝導回転ガントリー本体の 製作・組み立ては完了し、現在、治療室整備等の最 終工事が進められており、今秋からビーム試験を開 始する予定である。本発表では超伝導回転ガント リー開発の概要並びに、建設状況について紹介する。

2. 超伝導回転ガントリーの概要

超伝導回転ガントリーの概略図を Fig. 1 に示す。 重粒子線がん治療装置(HIMAC)により得られる核 子あたり最高 430 MeV の炭素ビームは回転ガント リー本体に搭載されている超伝導電磁石により輸送 され、ロボットアーム治療台上に固定されている患 者へ照射される。

Figure 1: Schematic drawing of the superconducting rotating gantry.

[#] y_iwata@nirs.go.jp

Proceedings of the 12th Annual Meeting of Particle Accelerator Society of Japan August 5-7, 2015, Tsuruga, Japan

PASJ2015 WEP127

Figure 2: Layout of the superconducting rotating gantry. The gantry consists of ten superconducting magnets (BM01-10), a pair of the scanning magnets (SCM-X and SCM-Y), and three pairs of beam profile-monitor and steering magnets (ST01-03 and PRN01-03).

回転ガントリービームラインを構成する超伝導電 磁石等のビーム輸送・診断機器は円筒形状の回転構 造体に設置・固定されている。円筒構造体の両端に は、それぞれエンドリングが取り付けられており、 構造体の荷重はエンドリングを介して 4 つのロー ラーで受けられている。回転構造体を回転させるこ とで、患者に対して重粒子線ビームを±180 度の如 何なる方向からも照射することが可能となる。

Figure 3: Beta and dispersion functions along the gantry beam line. Values of beta and dispersion at the isocenter are designed to be $\beta_x=\beta_y=1$ m and D=0 m (D'=0), respectively.

超伝導回転ガントリーを構成するビーム輸送機器 のレイアウトを Fig. 2 に示す。ビーム輸送機器は主 に 10 台の超伝導電磁石(BM01-10)、1 対のスキャ ニング電磁石 (SCM-X, SCM-Y)、3 対のステアリ ング電磁石及びプロファイルモニタ(ST01-03, PRN01-03)により構成されている。10 台の超伝導 電磁石のうち BM07 と BM08 を除く8 台の超伝導電 磁石は機能結合型超伝導電磁石であり、二極と四極 磁場が同時発生可能である。また、二極コイルと四 極コイルはそれぞれ個別の電源に接続されており、 独立励磁可能である。これら超伝導電磁石の採用に より、回転ガントリー全体の大幅な小型・軽量化が 可能となった。

ガントリービームラインのベータ及びディスパー ジョン関数を Fig. 3 に示す。回転ガントリー入り口 取り合い点でのツイス条件は $\beta_x=\beta_y=30$ m, $\alpha_x=\alpha_y=0$, D=0 m, D'=0 とし、またスキャニング照射において 精密な線量分布形成のため、アイソセンターでは $\beta_x=\beta_y=1$ m, $\alpha_x=\alpha_y=0$, D=0 m, D'=0 としている。

3. 超伝導電磁石の開発

ビーム光学設計に基づき超伝導電磁石の要求仕様が 決定し、更に要求仕様に基づき電磁場解析を含めた 超伝導電磁石の設計を実施した。全10台の超伝導電 磁石は偏向角やボアサイズに応じて5種類に分類さ れ、それぞれに関して電磁場解析を行った¹¹。超伝 導電磁石及び、超伝導コイルはビーム軌道に沿った 湾曲形状を有することから、磁場分布を求める際に は3次元電磁場計算コード(Opera-3d)を用いて電 磁場解析を行った。その一例として、26度偏向電磁 石(BM02-05)に関する計算結果をFig.4に示す。計 算においては、3426ターン/ポールの二極コイル **PASJ2015 WEP127**

Figure 4: Result of three-dimensional field calculations for BM02-05 using the Opera-3d code.

及び、400 ターン/ポールの四極コイルを忠実にモデ ル化し、所期の磁場均一度を得るため超伝導導体位 置の最適化を行った。設計では二極コイル電流 *I*=136 A にて、要求中心二極磁場 *B_{max}=2.88* T を得る。 また、四極磁場は二極コイル電流については、電流 *I*=130 A にて、ビーム収束に必要な四極磁場勾配 *G*=9.1 T/m を得る。コンダクタ位置の最適化後、 様々な励磁電流に対する磁場計算を実施し、ビーム が通過する有効磁場領域において磁場均一度が

 $|\Delta BL/BL| \leq 1.0 \times 10^{-4} \ (\Box \overline{\mathbb{W}})$

 $|\Delta GL/GL| \le 1.0 \times 10^{-3}$ (四極)

であることを確認した[1]。

上記設計に基づき、平成23年度に2台の超伝導電 磁石(BM04, BM10)の製造を行い、磁場測定を放 医研にて実施した(Fig.5)。続いて平成24年度に3 台の超伝導電磁石(BM03, BM05, BM06)、更に残 りの5台の超伝導電磁石、並びにスキャニング電磁 石やステアリング電磁石等の製造を平成25年度より 行い、平成26年度末に全機器の製造を完了した。超 伝導電磁石の製造後、NMRによる磁場測定及び、 ホール素子による磁場マッピングを全電磁石に対し て実施し、所期の性能が得られていることを確認し た^[4]。

Figure 5: Superconducting magnets of BM04 and BM10 in field measurements at NIRS.

Figure 6: Rotation tests of the gantry structure at the Toshiba Keihin Product Operations.

4. 回転構造体の設計・製造・輸送

超伝導電磁石等のビーム輸送機器を搭載する回転 構造体は東芝京浜事業所にて製造された。構造体サ イズは、両端に取り付けられているエンドリング間 の距離で 13.9 m、エンドリング外直径は 6.5 m であ る。

円筒形状の回転構造体は輸送及び製造の都合から 8分割構造とし、1対のエンドリングを含めると合計 で10個の大型パーツにより構成される。回転構造体 はガントリー回転に伴う各超伝導電磁石の変位量が ±2mm以内となるよう設計されている。最終的な回 転構造体の詳細なFEM計算では、各電磁石の変位量 は最大で約1mm以下と見積もられた。

回転構造体の各大型パーツ製造後、東芝京浜事業 所内で一度組み立てられ、各種検証作業が行われた (Fig. 6)。工場試験においては安全を見て、超伝導 電磁石の替わりにダミーウェイトが搭載され、回転 試験を実施した。試験では回転構造体及び、電磁石 ダミーウェイトの各箇所に対してレーザートラッ

Figure 7: One of the end ring in transportation. This picture was taken around the main entrance of NIRS.

Proceedings of the 12th Annual Meeting of Particle Accelerator Society of Japan August 5-7, 2015, Tsuruga, Japan

PASJ2015 WEP127

Figure 8: Installation of the gantry structure to the gantry room in NIRS.

構造計算による予測値と一致していることを確認した。

工場試験後、放医研へ向けた輸送のため、構造体 は一旦、解体された。解体された各大型部品は東芝 京浜事業所から千葉港へ船便で輸送され、千葉港の 倉庫にて一時保管された。その後、深夜に千葉港か ら放医研へ 35 トントレーラーにて 1 晩に 2 便(2 パーツ)のペースで輸送が行われた(Fig. 7)。輸送 された回転構造体の大型部品は翌早朝に新治療研究 棟ガントリー機械室へ搬入、据え付けられた(Fig. 8)。

回転構造体各部品の搬入及び、組立作業は平成27 年前半に完了し、その後、順次、超伝導電磁石の搬 入や、回転構造体への据付、並びにアライメントが 行われ、現在、回転構造体主要部品の組立工程を完 了した段階にある(Fig.9)。その後、再度、回転試 験等の検証作業を実施し、現在は各種配線・配管作 業を行うと共に、治療室内装の整備等を続けている (Fig. 10 は回転ガントリー治療室のイメージ図)。 また、超伝導電磁石冷却用の小型冷凍機の立ち上げ を開始し、8 月の電磁石試験に向けて冷却を続けている。

Figure 9: Picture of the superconducting rotating-gantry, as installed in NIRS. All the magnets as well as the profile monitors were mounted on the gantry structure.

Figure 10: Image of the treatment room for the rotating gantry.

5. まとめと今後の予定

重粒子線がん治療用回転ガントリーの小型・軽量 化のため、超伝導回転ガントリーの開発を行ってき た。機能結合型超伝導電磁石の採用により、既存の 重粒子線回転ガントリーに比べ、大幅な小型・軽量 化が実現されている。回転ガントリーの製造・組立 は概ね完了し、現在、配線・配管作業や、治療室の 整備を中心に作業が続けられている。これら残作業 や制御系の構築を9月中に完了させ、平成28年度か らの治療運用に向け、9月からのビームコミッショ ニングを開始する予定である。

参考文献

- [1] H. Eickhoff, et al., "TESTS OF A LIGHT-ION GANTRY SECTION AS AN EXAMPLE OF PREPARATIONS FOR THE THERAPY FACILITY IN HEIDELBERG", in Proceedings of the 8th European Particle Accelerator Conference, Paris, 2002 (EPS-IGA and CERN, Geneva, 2002), p. 2730.
- [2] Y. Iwata, et al., "Design of a superconducting rotating gantry for heavy-ion therapy", Phys. Rev. ST Accel. Beams. 15, 044701 (2012).
- [3] Y. Iwata, et al., "Development of curved combined-function superconducting magnets for a heavy-ion rotating-gantry", IEEE Transactions on Applied Superconductivity, Volume 24, Issue 3, 4400505 (2014).
- [4] 松葉俊哉他,「重粒子線回転ガントリー用超伝導磁石 の性能評価」, THP077.