
Figure 3: A typical magnet current ramp pattern with a 
cycle T0, a flat-bottom current IB, and a flat-top current IT.

Figure 4: A magnet current ramp from IB to IT. The 
current swings up and back at [1] and [3], respectively, in 
parabolic curves in order to avoid sudden current changes.
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Figure 1: An example of the J-PARC MR slow extraction
spills. The spill feedback systems of EQ and RQ, and the
transverse RF are applied on the debunched MR beam [2].
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Figure 2: CERN PS slow extraction spills before (left) and 
after (right) the ripple correction system is turned on [3].
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Abstract 
The 30 GeV proton beams are being stably extracted at 

the J-PARC Main Ring slow extraction system and 
delivered to the downstream Hadron Experimental 
Facilities, however presently, the large beam ripples 
deteriorate the beam spill qualities, while the ripple 
generation mechanisms are still not well understood yet. 

In order to obtain better understandings on how such 
serious ripples are being generated in MR, a simplified 
analytical approach is taken, and some of the so far 
obtained results are presented. 

The origin of the beam ripples can mainly be attributed 
to the magnetic field ripples of the main bending and 
quadrupole magnets of the MR. The simplified model of 
the magnet circuit allows the analytical solution with the 
ramp pattern magnet current. The dependence of the 
magnetic field ripples on the circuit parameters is discussed. 

INTRODUCTION 
Beam ripples have been critically important in proton 

synchrotron operations for more than half a century since 
the invention of synchrotrons [1], and are still one of the 
hardest problems for today's J-PARC Main Ring beams. 
In the present MR slow extraction operations, for example 
[2], the beam spills are mainly composed of sharp spikes, 
as is shown in Figure 1, and they are found to be difficult 
to improve the spill shape even after the various ripple 
correction systems are turned on. The bottom of the spill 
in Fig. 1 is completely blackened by the spikes with 
various frequency component ripples ranging from tens to 
thousands Hz. The MR spill shapes are clearly worse 

compared to, for example, those of CERN PS in Figure 2 
where the spills have clearer bottoms even without corrections. 

The origins of beam ripples have been searched for 
years as is, for example, described in [4]. In the present 
MR case, the biggest source of the beam ripples is 
supposed to be the magnetic field ripples of the main 
dipole and quadrupole magnets. Since the beam ripples 
contain lots of frequency components that cannot 
necessarily be explained to be originated from the magnet 
power supplies [2], the mechanism on how the ripples 
with various frequency components are generated in the 
magnet circuit systems should be investigated. 

In order to approach the better understanding on how 
the various ripples are generated in the MR magnet 
circuits, a simplified circuit model with a ramp pattern 
current is analytically solved, and the dependence of the 
ripples as a function of circuit parameters as inductance, 
capacitance, a ramp rate etc., is discussed. 

RAMP PATTERN OF MAGNET CURRENT 
The dipole and quadrupole magnet currents in the 

proton synchrotrons ramp up and down in accordance 
with the proton acceleration cycles T0, as is shown in 
Figure 3. The beam is injected at the flat-bottom current 
IB, accelerated to the flat-top current IT, and then extracted.  

A magnet current ramps up from IB to IT as is shown in 
Figure 4. At first period of time [0], the current is IB. The 
next period [1] is the smoothing time TS where the current 
starts to swing up at tB for TS in parabolic curve. After 
tB+TS the current increases linearly during the period [2]. 
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Figure 5: The schematic circuit model of one magnet family. 
The N components include both the magnets and the 
connections. The current source I0(t) supplies the ramp current.

 
Figure 6: The simplified circuit model with a single load.

Table 1: J-PARC MR dipole & quadrupole magnet families. 
The magnet units marked in red are connected by 
shielded cables, resulting in large cable capacitance [5]. 

N Length L R C Cable Total
units [m] [mH] [mΩ] [nF]

BM1 17 5.85 103.5 42.52 50.0 2920 3770
BM2 16 5.85 103.5 42.52 50.0 3020 3820
BM3 16 5.85 103.5 42.52 50.0 3200 4000
BM4 16 5.85 103.5 42.52 50.0 3170 3970
BM5 16 5.85 103.5 42.52 50.0 2880 3680
BM6 16 5.85 103.5 42.52 50.0 2860 3660
QDN 48 1.86 70.5 39.90 22.3 2650 3720
QFN 48 1.56 59.7 34.60 18.7 2710 3608
QFX 48 1.26 48.9 30.10 15.1 2360 3085
QDX 27 1.66 63.3 36.00 19.9 2440 2977
QFR 9 1.76 63.3 38.30 21.1 3120 3310
QDR 6 1.86 70.3 39.90 22.3 640 774
QDT 6 1.86 67.7 39.60 22.3 490 624
QDS 6 1.66 59.9 36.30 19.9 490 609
QFT 6 1.46 53.0 33.10 17.5 500 605
QFS 6 1.26 48.8 30.10 15.1 510 601
QFP 6 0.86 32.5 23.25 10.3 720 782

The current starts to swing back at tT − TS for TS in the 
period [3], again in parabola. At tT the current reaches IT, 
the period [4]. Due to the parabolic curve, the derivative 
DR, i.e. the ramp rate of the magnet current, becomes DR = IT −  IBTR −  TS ,    where TR = tT −  tB                (1) 

Accordingly, the magnet current as a function of time, 
I0(t), becomes as follows: At the period [0], I(t)  ≡ IB, 
and at the period [4], I(t)  ≡ IT. At the ramp periods [1], 
[2], and [3], [1] I(t) = IB＋DRTS (t − tB)ଶ2 , Iሶ(t) = DRTS (t − tB)  (2) 

 [2] I(t) = IB + DR ൜t − ൬tB + TS2 ൰ൠ , Iሶ(t) = DR      (3) 
 [3] I(t) = IT − DRTS (tT − t)ଶ2 , Iሶ(t) = DRTS (tT − t) . (4) 

SIMPLIFIED CIRCUIT MODEL 
Each dipole or quadrupole magnet system, called a 

family, has several to tens of magnet units connected in 
series by bus bars or cables. In Table 1 shows the families 
for the J-PARC MR. Each magnet unit, as well as each 
connection part, has its own inductance, resistance, and 
capacitance. The schematic circuit model of one magnet 
family, consequently, can be expressed as Figure 5, where 
the circuit contains N components which may be either 
the magnets or the connections. The current source I0(t) 
outputs the ramp current which is mathematically ideal 
with no ripples as is defined in (2) to (4). 

The current I0(t) mainly flow through L1, R1, ···, LN, RN, 
with fractional currents branching out at C1, ···, CN. At nth 
component (n: 1 to N), the branch current to Cn represents 
the oscillation with the circuit inductance, i.e. the LC 
oscillation, with the amplitude that positively correlates 
with Cn. This LC oscillation is the magnet field ripple itself. 
The large capacitance generates the large ripple current. 

Solving the Fig. 5 circuit directly is too complicated 
and does not necessarily gives good insights on the circuit 
behaviour with respect to such parameters as inductance, 
capacitance, and the ramp rate. Instead, starting with the 
single load with L1, R1, and C1, as is shown in Figure 6, 
the circuit behaviour becomes much simpler to understand. 

CIRCUIT EQUATIONS 
In the Fig 6, the electric charge Q1 stored on C1 is Qଵ(t) = Cଵ ∙ Vଵ(t)  . (5) 
Since the C1 current IC(t) is the time derivative of Q1, Iୡ(t) = Qሶ ଵ(t) = Cଵ ∙ Vሶଵ(t)  . (6) 
Using I0(t) and IC(t), the potential V1(t) is Vଵ(t) = Lଵ൫Iሶ − IሶC൯ + Rଵ(I − IC)  . (7) 
Substituting Vሶଵ(t) in (6) by (7), the equation for IC(t) is 

obtained as follows: IሷC + 2λଵIሶC + ωଵଶIC = Iሷ + 2λଵIሶ  , (8) 
where λଵ and ωଵ are the basic circuit constants defined as λଵ = Rଵ2Lଵ  [1/sec]: damping constant,                 (9) ωଵ = 1ඥLଵCଵ  [rad/sec]                                          (10)               ∶ angular frequency of LC oscillation. 

The implications of the constants λଵ  and ωଵ  will be 
mentioned in the next section. The equation (8) is a 
constant coefficient second-order ordinary differential 
equation for the unknown function IC(t). The right side of 
(8) is obtained with the known function I0(t) defined by (2) 
to (4). The general solution of (8) can be obtained as a sum 
of following (a) and (b). 

(a) The general solution of (8)'s homogeneous equation: IሷC + 2λଵIሶC + ωଵଶIC = 0  . (11) 
(b) The particular solution of the nonhomogeneous 

equation (8) (12) 
The solution of (8) for [1] to [4] is obtained as follows. 
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DAMPED OSCILLATION SOLUTION 
The general solution of the homogeneous equation (11) is IC(t) = Jଵ cos൫√1 − ε ∙ ωଵt − φଵ൯ ∙ eିభ୲ (13) 

where Jଵ and φଵare the arbitrary constants of integration 
that should be obtained by the initial conditions of the 
time periods [0] to [4], and ε is ε = ൬ λଵωଵ൰ଶ   .                                                              (14) 

The solution Iୡ(t)  behaves as the damped oscillation 
with the damping factor λଵ and the angular frequency ωଵ. 

 If the load is assumed, from Table 1, to have Lଵ = 10 mH, Rଵ = 10 mΩ , Cଵ = 10 nF, (15) 
then λଵ and ωଵ become λଵ = Rଵ2Lଵ = 0.5 [1/sec],   tୢ ≡ 1  λଵ = 2 [sec]   (16) ωଵ = 1ඥLଵCଵ = 10ହ radsec൨ , fଵ ≡ ωଵ2π = 16[kHz]. (17) 

If the load is assumed to be 10 times bigger than (15) as Lଵ = 100 mH, Rଵ = 100 mΩ ,  Cଵ = 100 nF, (18) 
then λଵ is the same as (16), and ωଵ becomes ωଵ = 10ସ[rad/sec],   fଵ = 1.6[kHz]  . (19) 

As the examples (15) and (18) show, the oscillations 
damp slowly, with the damping time tୢ = 2sec . If the 
condition Lଵ ∝ Rଵ roughly holds in different size systems, 
then the slow damping characteristic also always holds. 

The oscillation frequency fଵ  changes in inverse 
proportion to the load size as are shown in (17) and (19). 
If the condition Lଵ ∝ Cଵ  roughly holds, the oscillation 
frequencies become lower in the bigger magnet systems.  

In the realistic magnet systems in any size, ε defined in 
(14) is generally a small number; ε ≪ 1  . (20) 

SOLUTIONS IN PERIODS [1] TO [4] 
The general solution of (8) is obtained as a sum of the 

particular solution of (8) and the general solution (13). 
The former can be obtained with I(t) at the ramp periods 
[1] to [4]. Unknown constants of integration, Jଵ and φଵ, can 
be obtained by applying the initial conditions. 
Solution in the period [1] (۰ܜ ≦ ܜ < ۰ܜ +  : (܁܂

In the period [1], Iሶ(t)and Iሷ(t) are, from (2), Iሶ(t) = DRTS (t − tB) , Iሷ(t) = DRTS   .              (21) 

With (21), the right side of (8) becomes Iሷ + 2λଵIሶ = DRTS + 2λଵ DRTS (t − tB) .                   (22) 

From (22), the particular solution Iୡ(t) in the left side of 
(8) can be assumed as a first-degree function of t, such as Iୡ(t) = a + b(t − tB) .  (23) 

Substituting (23) for the left side of (8), Iୡ(t) becomes Iୡ(t) = 1 − 4εωଵଶ DRTS + 2λଵωଵଶ DRTS (t − tB)  .               (24) 

From (24) and (13), the general solution of (8) can be 
obtained, while substituting t to t − tB in (13), as Iୡ(t) = 1 − 4εωଵଶ DRTS + 2λଵωଵଶ DRTS (t − tB) +Jଵ cos൫√1 − ε ∙ ωଵ(t − tB) − φଵ൯ eିభ(୲ି୲B).  (25) 

The initial conditions for (25) is that the expression 
(25) in the period [1] smoothly connects to that in [0], i.e., Iୡ(tB) = 0,     IሶC(tB) = 0  . (26) 

Applying the condition (26) on (25), Jଵ  and φଵ  are 
obtained, and the expression of IC(t) for the period [1] is; Iୡ(t) = DRωଵଶTS ൜(1 − 4ε) + 2λଵ(t − tB)− 1√1 − ε cos൫√1 − ε ∙ ωଵ(t − tB) − φଵ൯ eିభ(୲ି୲B)ൠ 

 (27) φଵ = Tanିଵ 3 − 4ε1 − 4ε ට ε1 − ε  .                               (28) 

It is easily confirmed that IC(t) in (27) satisfies (26).  
The right side of (27) is composed of 3 terms; the 

constant term (1 − 4ε) , the term proportional to the 
elapsed time 2λଵ(t − tB), and the damped oscillation term.  IC(t) obeys the proportional expression as Iୡ(t)  ∝  DRωଵଶTS = LଵCଵ  DRTS                                     (29) 

This relation is essentially important. The magnitude of 
the damped oscillation is proportional to the circuit 
inductance and capacitance Lଵ, Cଵ, and the ramp rate DR.  
Solution in the period [2] (۰ܜ + ܁܂ ≦ ܜ < ܂ܜ −   : (܁܂

In the period [2], Iሶ(t)and Iሷ(t) are, from (3), Iሶ(t) = DR , Iሷ(t) = 0  . (30) 
The initial conditions in the period [2] is ൜ IC(tB + TS) = IC(tB + TS) in [1](27)    IሶC(tB + TS) = IሶC(tB + TS) in [1](27)  . (31) 

From (30) and (31), IC(t) is solved as IC(t) = DRωଵଶTS ൜2λଵTS + Sଶ√1 − ε       − ∙ cos൫√1 − ε ∙ ωଵ൫t − (tB + TS)൯ − φଶ൯ eିభ൫୲ି(୲BାTS)൯ൠ 

 (32) Sଶ = ට1 − 2 cos൫√1 − ε ∙ ωଵTS൯ eିభTS + eିଶభTS     (33) φଶ = Tanିଵ sin φଵ + sin൫√1 − ε ∙ ωଵTS − φଵ൯ eିభTScos φଵ − cos൫√1 − ε ∙ ωଵTS − φଵ൯ eିభTS  . 
 (34) 

The solution (32) satisfies the initial conditions (31) as 
is easily checked, and keeps the relation (29). 
Solution in the period [3] (܂ܜ − ܁܂ ≦ ܜ <   : (܂ܜ

In the period [3], Iሶ(t)and Iሷ(t) are, from (4), Iሶ(t) = DRTS (tT − t) , Iሷ(t) = − DRTS   .           (35) 

The initial conditions in the period [3] is ൜ IC(tT − TS) = IC(tT − TS) in [2](32)   IሶC(tT − TS) = IሶC(tT − TS) in [2](32) . (36) 

From (35) and (36), IC(t) is solved as IC(t) = DRωଵଶTS ൜−(1 − 4ε) + 2λଵ(tT − t) + Sଷ√1 − ε       −∙ cos൫√1 − ε ∙ ωଵ൫t − (tT − TS)൯ − φଷ൯ eିభ൫୲ି(୲TିTS)൯ൠ (37) 

Sଷ = ඨ1 − 2 Sଶcos൫√1 − ε ∙ ωଵ(TR − 2TS) + φଵ − φଶ൯∙ eିభ(TRିଶTS) + Sଶଶ ∙ eିଶభ(TRିଶTS)  (38)  
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Figure 7: Top: The obtained ripple current IC(t) plotted 
for 150msec from the beginning of the current ramp tB. 
Middle and bottom: The expanded plots for the 0.2msec 
period at tB and tB + TS. The circuit parameters of (15) 
are assumed, where one cycle becomes 0.063msec. 
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φଷ = Tanିଵ ቌsin φଵ−Sଶ ∙ sin൫√1 − ε ∙ ωଵ(TR − 2TS) − φଶ൯∙ eିభ(TRିଶTS)ቍ
ቌcos φଵ+Sଶ ∙ cos൫√1 − ε ∙ ωଵ(TR − 2TS) − φଶ൯∙ eିభ(TRିଶTS)ቍ . 

 (39) 
The solution (37) satisfies (36), and keeps the relation (29). 

Solution in the period [4] (܂ܜ ≦   : (ܜ
In the period [4], Iሶ(t)and Iሷ(t) are Iሶ(t) = Iሷ(t) = 0  . (40) 
The initial conditions in the period [4] is ൜ IC(tT) = IC(tT) in [3](37)   IሶC(tT) = IሶC(tT) in [3](37) . (41) 

From (40) and (41), IC(t) is solved as IC(t) = DRωଵଶTS Sସ√1 − ε cos൫√1 − ε ∙ ωଵ(t − tT) − φସ൯∙                                                                          ∙ eିభ(୲ି୲T)   (42) 
 Sସ = ඨ1 − 2 Sଷcos൫√1 − ε ∙ ωଵTS + φଵ − φଷ൯eିభTS+Sଷଶ ∙ eିଶభTS(43) 

φସ = Tanିଵ sin φଵ +Sଷ sin൫√1 − ε ∙ ωଵTS − φଷ൯eିభTScos φଵ −Sଷ cos൫√1 − ε ∙ ωଵTS − φଷ൯eିభTS . 
 (44) 

The solution (42) satisfies (41), and keeps the relation (31). 

COMPARISON TO THE SIMULATIONS 
The first part of the solution IC(t) is plotted in Figure 7. 

The parabola smoothing time TS = 100msec  and the 
circuit parameters of (15) are assumed. In the lower two 
figures, the analytical solutions (black) and the LTSpice 
simulation results (red) are shown. They agree well, 
suggesting the validity of the analytical solutions. 

As is shown in (16), the ripple IC(t) damps slowly. In 
the time range of Fig. 7, the amplitude is almost constant. 

DAMPED OSCILLATION AMPLITUDES 
In the parabola periods [1] and [3], the solutions of IC(t) 

in (27) and (37) contain the constant term (1 − 4ε) and the 
term proportional to the elapsed time. In the linear ramp 
period [2], the constant term 2λଵTS is included in (32). 

Apart from those terms, all the solutions from [1] to [4], 
marked in blue, contain the damped oscillation terms. If ε 
and φ୬ (n: 1 to 4) are ignored due to their relatively small 
values, the damped oscillation term can be characterized by S୬ cos ωଵ⊿t ∙ eିభ⊿୲ (45) 
where S୬  is the specific amplitude and ⊿t is the elapsed 
time of each period.  

In the expressions of S୬, (33), (38), and (43), the cosine 
values are between -1 and 1. Hence the ranges of S୬ 
become  |1 − eିభTS| ≦ Sଶ ≦ 1 + eିభTS|1 − Sଶeିభ(TRିଶTS)| ≦ Sଷ ≦ 1 + Sଶeିభ(TRିଶTS)|1 − SଷeିభTS| ≦ Sସ ≦ 1 + SଷeିభTS  (46) 

If, for example, λଵ = 0.5secିଵ and TS = 0.1sec, eିభTS 
is close to unity because of the slow damping, and Sଶ is 0.0488 ≦ Sଶ ≦ 1.9512 (47) 

The value Sଶ largely changes by a factor of up to 40 if 
the cosine value in (33), cos൫√1 − ε ∙ ωଵTS൯ , changes. 
The same property is applied to Sଷ , Sସ , and to all the 
amplitudes in the following ramp cycles in Fig. 3.  

In the J-PARC MR slow beam extractions, it is 
generally observed that the spill shapes, as is shown in 
Fig. 1, change every cycle to cycle of the MR acceleration. 
Sensitive fluctuations of S୬  in connection to the cosine 
values will be the origin of this irreproducibility. 

CIRCUIT PARAMETER DEPENDANCE 
As are shown in the solutions (27), (32), (37), and (42), 

the ripple current IC(t) always has the form of Iୡ(t)  = DRωଵଶTS ቄ⋅⋅ ⋅⋅⋅ ⋅⋅ቅ                                              (48) 

where the terms inside the parentheses {} are the 
dimensionless numbers in the order of unity and define the 
dependence of ripple as a function of time. 

Outside of the parentheses {} is the factor that signifies 
the magnitude of the ripple. Here this factor is defined as IC ≡ DRωଵଶTS = LଵCଵ  DRTS   .                                      (49) 

As is seen from (49), the ripple magnitude IC  is 
proportional to the circuit inductance Lଵ, the capacitance Cଵ , the ramp rate DR , and inverse of the parabola 
smoothing time TSି ଵ.  

In the originally designed requirements of MR, the 
expected current ripple is ~10-6 at the extraction [7]. The 
maximum designed bending magnet current is ~3000 A at 
50 GeV. The corresponding ripple current is  3000 ⋅ 10ି = 3 mA (50) 
Hence the ripple current IC should be in the order of mA. 

Assuming simple numbers for example, from Table 1, 
as follows, Lଵ ∼ 1000 mH,  Cଵ ∼ 1000 nF,DR ∼ 1000 A/ sec,  TS = 0.1sec ,   (51) 

then the ripple current IC becomes IC = LଵCଵDR/TS  ∼ 10 mA  . (52) 
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The estimation of (52) shows that, although the 
expression of IC is based on the simplified circuit, Fig. 6, 
the derived LC oscillation current formula (49) properly 
represents the magnitude of the ripple current. 

In the realistic MR case at present, however, the total 
capacitance of each magnet family is several times bigger 
than the sum of magnet capacitance. The cables used for 
the electrical connections of the magnets bring large 
capacitance into the circuit, as is shown in Table 1. The 
resulted ripple in (49) will be IC~30mA with Cଵ~3000nF. 

The beam ripple influence with the large capacitance is 
particularly severe in the injection periods when the beam 
size is large and the majority of the beam power loss is 
occurring. If the ramp down rate just before the injection 
period is assumed to be bigger than the ramp up rate as DR = 2000 A/sec, and Cଵ~3000nF, then Iୡ(t) ∼ 60 mA. 
The bending magnet current at the injection period is 
~200A, hence the ripple rate is ~60mA/200A = 3 × 10ିସ. 
With an uncontrolled TS, it may even reach 10ିଷ. 

BUS BAR AND CABLE CAPACITANCE 
Since the inductance is mainly defined by the machine 

dimensions such as magnet apertures or power line 
lengths, it’s impossible to reduce Lଵ  in the IC .formula 
(49). The only possible way to lower the ripple is to 
reduce the capacitance of the entire circuit.  

In order to fulfil this critical requirement, bus bar 
connections are commonly employed in the major proton 
synchrotrons, as are described in, for example, [3] and [6]. 
In bus bars, the capacitance per unit length is in general 
tens of times smaller than that of cables [8]. In fact, if the 
bus bar capacitance is estimated as co-axial conductors 
with an inner conductor radius r୧  of 2cm and an outer 
conductor radius r୭  of 0.5m, the capacitance per unit 
length C becomes C ≡ 2πε/ln(r/r୧)  ~17 nF/km  . (53) 
The assumed outer radius r୭  may differ from place to 
place in the synchrotron tunnel, but C in (53) is generally 
insensitive to r୭ when its size is assumed to be ≳ 0.1m. 

In contrast to bus bars, high current cables have r୭ only 
~20% or so larger than r୧, resulting in a large factor of 1/ln(r/r୧) > 5 . And there exists another factor 
multiplied, that is the relative permittivity of εᇱ~2.26 for 
the crosslinked polyethylene insulation layer between the 
inner and outer conductors. As a result, the cable 
capacitance per unit length CCୟୠ୪ୣ , for example for the 
500 mm2 shielded cables [9] used for the MR bending and 
quadrupole magnets, becomes CCୟୠ୪ୣ ≡ 2πε′ε/ln(r/r୧)  ~740nF/km  . (54) 

The original design for the high current connection of 
the MR magnets is naturally by bus bars which have the 
same dimensions as the magnet’s hollow conductors [8]. 
The design was kept for a while in the MR construction 
period [10] but later it was changed to the cables [11]. 

In the realistic case, the large cable capacitance is 
divided and scattered in the MR tunnel along with the 
magnets as in Figure 5, forming lots of minor current 
loops associated with the ripples of various LC oscillation 
frequencies. In the simplified treatment at present with a 
single load, the distributed feature of multiple loads is 
ignored. The expansion to the multiple element circuit is 
the next step subject and will be reported elsewhere. 

RAMP PARAMETER DEPENDANCE 
As is seen from (49), the ripple current IC(t) is related 

to the current ramp parameters as IC(t)  ∝  DR/TS  . (55) 
This factor appears in the right side of the circuit 

equation (8), Iሷ + 2λଵIሶ , as is seen in (22). This feature 
holds in the circuits with multiple loads, although its proof 
is skipped in this article. It is only pointed out here that the 
proportional expression (55) always holds in any circuit. 

SUMMARY 
The beam ripple generation mechanism in proton 

synchrotron magnet ramp currents is analytically 
investigated in a simplified circuit model.  

It is revealed that the magnet current ripple is generated 
by the magnet current ramp itself, even if the ramp 
current as a function of time is mathematically ideal with 
no ripples. The magnitude of the resulting ripple current is 
proportional to the circuit capacitance and the ramp rate. 
The large capacitance and the faster ramp increase the ripples. 
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