

Overall Design of the CEPC Injector Linac

Jingru Zhang

On behalf of CEPC linac team

Institute of High Energy Physics, CAS

1 CEPC layout

2 CEPC linac design

3 CEPC linac key technologies development

4 Summary

- CEPC (Circular Electron-Positron Collider) was proposed by Chinese Scientists in Sep. 2012
- It is a Higgs Factory
- There will be two detectors in the main ring
- The CDR has been official released in Nov 14, 2018
- From 2018-2022, finish TDR

- The circumference of the collider is 100 km (120Gev)
- The booster circumference is 100 km.
- The total length of the linac is about 1.2 km $(10GeV)$

• The requirements of the booster to the linac

•Linac design goals

- **Should provide beams that can meet requirements of** Booster
- ■Top-up injection can be implemented
- **Should have the high availability and reliability**
	- \rightarrow Thermionic electron gun (High charge)
	- \triangle Normal conducting structures and mature technologies
	- \bullet ~ 15% backups for linac RF units
- **Should have the potential to meet the higher** requirements and updates in the future, such as
	- \rightarrow Two bunches accelerating mode
	- \triangle Increasing of charge quantity

. Layout of the linac

Electron linac

nPositron linac

80MW klystron

• Electron linac (source) **nThermionic triode electron gun** ■Sub-harmonic pre-buncher \triangle 143 MHz \triangle 572 MHz **Buncher & AO** \triangle 2860 MHz \blacksquare Emittance \triangle <100 mm-mrad (Norm.Rms) **n**Transmission efficiency $\sim 90\%$

•Positron linac (Source)

- ■Target (conventional)
- ■Adiabatic Matching Device (AMD)
- ■Capture section
- **n** Pre-accelerating section
- ⁿChicane (Deflecting the useless electrons and photons)

^lPositron linac (Source :AMD)

- Length: 100 mm
- \blacksquare Aperture: 7 mm \rightarrow 52 mm (accelerating structure aperture is 25mm)
- $Magnetic field: (5.5 T\rightarrow 0 T) + 0.5 T$

^lPositron linac (Source: AMD)

- **ELONGER bunch length**
	- ◆Different energy
	- \bullet Different horizontal momentum

. Positron linac (Source: Capture section)

- ■Capture structure
	- \triangle Length:2 m
	- \triangle Aperture: 25 mm
	- ◆Gradient: 22 MV/m
- \blacksquare The capture RF phase

Capture efficiency VS. input RF phase

. Positron linac (Source: Capture section)

- \blacksquare The capture phase
	- \triangle Accelerating mode
	- \bullet better moment chip
	- \bullet small phase spread

**• Positron linac (Source: The pre-
accelerating structure)**

- Different modes have different optimal accelerating phases
- Acceleration mode have higher positron yield
	- \triangle Stray bunches should be considered

• Positron linac (Source)

- Norm. RMS. Emittance is about 2500 mm-mrad
- \blacksquare Energy: >200 MeV
- **Positron yield**
	- \bullet Ne+/Ne- ~=0.55
	- \bullet [-8°,12°,235 MeV,265 MeV]

 $\mathsf{E}% _{\mathcal{A}}\left(t\right) \equiv\mathsf{E}_{\mathcal{A}}\left(t\right)$

^lPositron linac (Damping ring)

D, Wang

.Positron linac

- ■10 Gev with 3 nC charge
- ■Energy spread (rms): 0.16%
- \blacksquare Emittance with DR (rms): 30(H)/10nm(V)

.S-band accelerating structure

^lFlux concentrator

• S-band accelerating structure design

- **n** Motivation: The total energy of the main Linac is 14 GeV.
- Goal: For the 3 meters long accelerating structure, about 30 $MV/m@1\mu S$ (without beam) is expected.

• S-band accelerating structure design ⁿCavity shape optimization

- \bullet Superfish is used to optimize the single cell.
- \triangle Rounding the cell improves the quality factor by >12% and reduces the wall power consumption. At the same time, the shunt impedance increases by ~10.9%.
- \triangle Irises with elliptical shape (r2/r1=1.8) can reduce the peak surface field by 13%.

.S-band accelerating structure design

.S-band accelerating structure design

• S-band accelerating structure design

n Coupler design

- \triangle The asymmetry of the coupling cavity will cause emittance growth.
- \triangle The shape of the coupling cavity is racetrack dual-feed type.
- \triangle Kyhl method is used to match the coupler.

$$
\varepsilon_{n-final} = \sqrt{\varepsilon_{n-initial}^2 + \sigma_x^2 \left(\frac{\sigma_{\Delta p_x}}{mc}\right)^2}
$$

$$
\Delta p_x = \frac{e^{\Delta z E_0}}{2\omega a} [\Delta \theta * sin\varphi - \frac{\Delta E}{E_0} cos\varphi]
$$

The calculation model

The *distribution of* the electric field on axis

• Factors to limit the gradient: **Peak surface electric field (E** peak) \bullet E_peak < 160MV/m at S-band. ■ Peak surface magnetic field (H peak) \bullet Pulsed heating effect will cause the temperature rise at the coupler window.
ΔT= $\frac{1}{\sqrt{2\pi} \cdot 5}$, for S-band ΔT < 50°C is safe. $\overline{2}$ \textit{H}_{p} $\frac{1+1-\sqrt{P}}{\sigma\delta\sqrt{\pi\rho ck}}$, for S-band $\Delta T < 50^{\circ}$ C is safe. ■ Modified Poynting vector (Sc), $\bullet S_c = Re\{\bar{s}\} +$ $Im\{\vec{s}$ $\frac{155}{6}$ '. $S_c^{-15} t_p^{\sqrt{5}}$ $B\!\!\!\!/ P\!\!R$ $=$ const. If the beam break down rate is $1^{\ell}1^{\ell}0^{-6}$ bpp/m, the safe value for $1\mu s$ pulse length is 2.3 MW/mm². **n**Pulse length (1µS)

• Factors to limit the gradient:

- ■3D program HFSS is used to confirm the design.
- ■The 1st cell adjacent the input coupler is simulated for Pin=75 MW.
- The values are safe. Both E peak and Sc locates at E_{peak} the iris area. H peak=86 kA/m. Sc max=0.59 MW/mm².

Surface electric field Surface magnetic field Modified Poynting vector

• Factors to limit the gradient:

- To reduce the pulsed heating, the coupler window edge is rounded.
- **n**For S-band copper: ΔT ^{[0}c]=127 $|H_{||}[MA/m]|^2 \sqrt{f.[GHz].t_p[uS]}$
- **For 75 MW input power, the maximum value of the** peak surface magnetic field is $2.1*105$ A/m. for 1μ S pulse length, $\Delta T = 9.4$ ^oC.

• S-band accelerating structure design

ⁿMechanical design

- \triangle Inner water-cooling has been adopted. 8 pipes are around the cavity.
- \triangle Compact coupler arrangements. The splitter is milling together with the coupling cavity.
- \rightarrow Two tuners are outside the cavity.

^lMechanical design

Accelerating structure under cold test

• S-band accelerating structure design

\blacksquare High power test bench

- \triangle The power source is available at IHEP.
- \triangle The faraday cup and magnet has been designed in order to diagnostic the dark current.
- \triangle The high power test will begin recently.

Modulator and klystron

Test bench upgrade

Analyzing Magnet Faraday Cup

. Flux concentrator design

- ■The FLUX concentrator produces a pulsed magnetic field of 6 T to 0.5 T and It is difficult to machining.
- \blacksquare An MOU was signed with KEK to assist us in the spiral wire cutting process.

The mechanical design of **FLUX** concentrator

The finished F

The test bench of the FLUX concentrator

• Flux concentrator design

■solid-state pulsed power generator

- \triangle The maximum output value is 15 kA / 15 kV / 5 µs;
- \triangle Solid state IGCT discharge switch module is used;
- \triangle The 10 kA output power has tested successfully;
- \bullet Full output power 15 kA will be tested in the near future.

Parameters	Value	Unit	Tek tziff 触发:	
Peak pulse current Pulse width (bottom	\geq 15	kA		
width)	5±0.5	us		
Pulse waveform	Half sine wave			
Repetition frequency	50	Hz		
Long term stability	±0.5%			
Peak voltage of charging The type of discharge	15	kV	$4.00\mu s$ 250M次/ 10k 点 400 V 标准差 最大值 5.56k	
switch	IGCT		$86\overline{)}20$ 17:55:56 235 -1.70 $-1.08k$ 1.778 _u 59.45n 1.659u	

-00 -1 - 0  10-10

The output of 10kA measurement

- The linac provides 10 GeV electron and positron beam with single bunch mode to the Booster.
- A bypass section has been designed for the e- to make the e+ target simple.
- A fixed tungsten target is used in the positron source system. The e- beam on the target is 4 GeV & 10 nC.
- A damping ring is in the position of 1.1 GeV to reduce the positron emittance.
- An S-band accelerating structure and A FLUX concentrator are designed and fabricated. The prototypes are under test.

Thank you for your attention!

